期刊文献+

视觉传感网络分布式在线数据关联 被引量:2

Distributed Online Data Association in Visual Sensor Networks
下载PDF
导出
摘要 数据关联是视觉传感网络监控系统的基本问题之一.本文针对无重叠视域视觉监控网络的多目标跟踪问题提出一种基于多外观模型的视觉传感网络在线分布式数据关联方法,将同一目标在不同摄像机节点上的外观用不同的高斯模型描述,由分布式推理算法综合利用外观与时空观测计算关联变量的后验概率,同时通过近似最大似然估计算法对各传感节点上的外观模型参数进行在线估计.实验结果表明了所提方法的有效性. One of the fundamental requirements for visual surveillance with smart camera networks is the correct associa- tion of camera's observations. In this paper, we present a distributed online approach based on multiple appearance models for multi-object tracking with distributed non-overlapping cameras. Firstly, we use multiple Gaussian models to describe each object^s appearances under different camera nodes. Secondly, we develop a novel distributed online framework, in which the posterior margins of association variables are calculated using appearance and spatio-temporal information by a distributed inference algorithm, and the model parameters are updated online on each camera by approximate maximum likelihood estimation. Experimental results show the validity of the proposed method.
作者 刘莉 万九卿
出处 《自动化学报》 EI CSCD 北大核心 2014年第1期117-125,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61174020) 北京市自然科学基金(4113072)资助~~
关键词 视觉传感网络 数据关联 分布式在线推理 极大似然估计 多模型 Smart camera networks, data association, online distributed inference, maximum likelihood estimation,multiple models
  • 相关文献

参考文献18

  • 1Gilbert A,Bowden R. Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity[A].Berlin,Heidelberg:Springer-Verlag,2006.125-136.
  • 2Javed O,Shafique K,Rasheed Z,Shah M. Modeling intercamera space-time and appearance relationships for tracking across non-overlapping views[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2008,(2):146-162.
  • 3Kuo C H,Huang C,Nevatia R. Inter-camera association of multi-target tracks by on-line learned appearance affinity models[A].Berlin,Heidelberg:Springer-Verlag,2010.383-396.
  • 4Song B,Roy-Chowdhury A K. Robust tracking in a camera network:a multi-objective optimization framework[J].IEEE Journal of Selected Topics in Signal Processing,2008,(4):582-596.
  • 5刘少华,赖世铭,张茂军.基于最小费用流模型的无重叠视域多摄像机目标关联算法[J].自动化学报,2010,36(10):1484-1489. 被引量:9
  • 6Zajdel W,Klose B J A. A sequential Bayesian algorithm for surveillance with nonoverlapping cameras[J].{H}INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE,2005,(8):977-996.doi:10.1142/S0218001405004423.
  • 7Zajdel W. Bayesian Visual Surveillance:from Object Detection to Distributed Cameras[D].University of Amsterdam,Amsterdam,2006.
  • 8万九卿,刘青云.基于高阶时空模型的视觉传感网络数据关联方法[J].自动化学报,2012,38(2):236-247. 被引量:5
  • 9Rinner B,Wolf W. A bright future for distributed smart cameras[J].{H}PROCEEDINGS OF THE IEEE,2008,(10):1562-1564.
  • 10Mensink T,Zajdel W,Krose B. Distributed EM learning for appearance based multi-camera tracking[A].Vienna,Austria:IEEE,2007.178-185.

二级参考文献33

  • 1Kettnaker V, Zabih R. Bayesian multi-camera surveillance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 253-259.
  • 2Makris D, Ellis T, Black J. Bridging the gaps between cameras. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wash- ington D.C., USA: IEEE, 2004. 205-210.
  • 3Pasula H, Russell S J, Ostland M, Ritov Y. Tracking many objects with many sensors. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers Inc, 1999. 1160-1171.
  • 4Porikli F, Divakaran A. Multi-camera calibration, object tracking and query generation. In: Proceedings of the IEEE International Conference on Multimedia and Expo. Baltimore, USA: IEEE, 2003. 653-656.
  • 5Javed O, Rasheed Z, Shafique K, Shah M. Tracking across multiple cameras with disjoint views. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 952-957.
  • 6Song B, Roy-Chowdhury A K. Stochastic adaptive tracking in a camera network. In: Proceedings of the llth IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 7Marinakis D, Dudek G, Fleet D J. Learning sensor network topology through Monte Carlo expectation maximization. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 4581-4587.
  • 8Niu C W, Grimson E. Recovering non-overlapping network topology using fax-field vehicle tracking data. In: Proceedings of the 18th IEEE International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 944-949.
  • 9Faxrell R, Davis L S. Decentralized discovery of camera network topology. In: Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras. Stanford, USA: IEEE, 2008. 1-10.
  • 10Zhang L, Li Y, Nevatia R. Global data association for multiobject tracking using network flows. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.

共引文献10

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部