期刊文献+

非线性弹性地基上四边自由矩形薄板的分岔与混沌运动分析 被引量:1

Bifurcation and chaos analysis of thin rectangular plate on nonlinear elastic foundation
下载PDF
导出
摘要 研究了非线性地基上矩形薄板的分岔与混沌运动.运用Hamiltion能量变分原理,建立了非线性弹性地基上四边自由矩形薄板的非线性振动方程.应用分离变量法和Galerkin法对方程进行求解,得到仅以W(τ)为未知函数的Mathieu-Duffing型非线性参数振动方程.在数值分析中,分别对该方程取某一连续变化的参数为变量进行分析,分别作出系统运动的分岔图以及进入混沌运动的庞加莱映射图、相平面轨迹图和时间历程曲线波形图,以揭示地基板系统进入分岔与混沌运动的规律. The bifurcation and chaos analysis of thin rectangular plate on nonlinear foun- dation is studied. Based on the Hamilton theory, the nonlinear vibration equations for the system is established by using Segregation variable method and Galerkin method,then a nonlinear parametric vibration equation, which is similar to Mathieu-Duffing equation is obtained and its unknown parametric is only W(r). The map of bifurcation diagrams for the system and Poincare map are made. The chaotic motion of the phase plane trajectory and the time history curve is formed when the system enter chaos are made. Therefore, the characteristics are revealed when the system is fallen into the bifurcation and chaos motion.
出处 《交通科学与工程》 2013年第4期26-32,共7页 Journal of Transport Science and Engineering
关键词 非线性地基 矩形薄板 非线性振动 分岔 混沌 nonlinear foundation thin rectangular plate nonlinear Vibration bifurcationchaos
  • 相关文献

参考文献11

二级参考文献43

共引文献25

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部