摘要
假设潜伏者与染病者都具有传染性且染病者恢复后对该病具有终身免疫力,建立了一类带有非线性传染率(γaE/(1+bEn)+λaI/(1+bIn))的SEIR传染病模型,得到了疾病是否会成为地方病的基本再生数,讨论了无病平衡点和地方病平衡点的全局稳定性.
Assuming that latent and infected individuals have infectivity and infected individuals have life- tong immunity after recovery of the disease. An infectious disease models was built with a class of nonlin- ear infectious rate (γαE/(1+bE^n)+λaI/(1+bI^n)), the basic reproduction number was got that if the disease will become endemic diseases, as well as discussion on the global stability of the disease-free e- quilibrium and the endemic equilibrium.
出处
《纺织高校基础科学学报》
CAS
2013年第4期436-440,449,共6页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(11101323)
关键词
传染病模型
基本再生数
无病平衡点
地方病平衡点
全局稳定性
epidemic model
basic reproduction number
disease-free equilibrium point
endemic equilibri-um
global stability