期刊文献+

一类带有非线性传染率的传染病模型的全局性态 被引量:3

Global analysis of an epidemic model with nonlinear incidence rate
下载PDF
导出
摘要 假设潜伏者与染病者都具有传染性且染病者恢复后对该病具有终身免疫力,建立了一类带有非线性传染率(γaE/(1+bEn)+λaI/(1+bIn))的SEIR传染病模型,得到了疾病是否会成为地方病的基本再生数,讨论了无病平衡点和地方病平衡点的全局稳定性. Assuming that latent and infected individuals have infectivity and infected individuals have life- tong immunity after recovery of the disease. An infectious disease models was built with a class of nonlin- ear infectious rate (γαE/(1+bE^n)+λaI/(1+bI^n)), the basic reproduction number was got that if the disease will become endemic diseases, as well as discussion on the global stability of the disease-free e- quilibrium and the endemic equilibrium.
出处 《纺织高校基础科学学报》 CAS 2013年第4期436-440,449,共6页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11101323)
关键词 传染病模型 基本再生数 无病平衡点 地方病平衡点 全局稳定性 epidemic model basic reproduction number disease-free equilibrium point endemic equilibri-um global stability
  • 相关文献

参考文献11

二级参考文献13

  • 1[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 2[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 3[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 4[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 5[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 6[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 7[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.
  • 8Li M Y, Gaef J R, Wang L. Global dynamics of a SEIR model with varying total population size[J]. Math Biosci, 1999, 160(2): 191-213.
  • 9Fan M, Li M Y, Wang K. Global stability of a SEIR model with recruitment and a varying total population size[J]. Math Biosci, 2001, 170(2): 199-208.
  • 10Busenberg S, van den Driessche P. Analysis of a disease transmission model in a population with varying size[J]. J Math Biol, 1990, 28(3): 257-270.

共引文献82

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部