期刊文献+

抛物-椭圆吸引排斥趋化模型的定性分析

Qualitative analysis of a parabolic-elliptic attraction-repulsion chemotaxis model
下载PDF
导出
摘要 考虑一个抛物-椭圆吸引排斥趋化模型.通过建立合适的熵不等式,利用不动点原理,Lp估计技巧,广义的Gagliardo-Nirenberg插值不等式和Moser迭代,证明了当细胞的初始质量满足条件‖u0‖L1(Ω)≤xαCNG时,该模型存在惟一的整体解. A parabolic-elliptic attraction-repulsion chemotaxis model is considered. By establishing appro- priate entropy inequality,based on a fixed point argument, LP-estimate technique,the generalized Gagli- ardo-Nirenberg inequality and Moser's iteration, it is proved that the model admits a unique global solu- tion provided the initial cell mass satisfies the condition that ||U0||L2(Ω)≤xaCNG.
作者 陈道会
出处 《纺织高校基础科学学报》 CAS 2013年第4期474-480,共7页 Basic Sciences Journal of Textile Universities
关键词 趋化性 吸引-排斥 熵不等式 整体存在性 chemotaxis global existence attraction-repulsion entropy inequality
  • 相关文献

参考文献11

  • 1TELLO J I,WINKLER M. A chemotaxis system with logistic source[J].{H}Communications in Partial Differential Equations,2007,(06):849-877.
  • 2KELLER E F,SEGEL L A. Initiation of slime mold aggregation viewed as an instaility[J].{H}Journal of Theoretical Biology,1970.399-415.
  • 3HORSTMANN D. From 1970 until present:the Keller-Segel model in chemotaxis and its consequences[J].I Jahresber Deutsch Math-Verien,2003,(02):103-106.
  • 4HORSTMANN D,WINKLER M. Boundedness vs blow-up in a chemotaxis system[J].{H}Journal of Differential Equations,2005,(01):52-107.
  • 5LIU J,WANG Z A. Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension[J].J Biol Dyn,2012,(01):31-41.
  • 6WINKLER M. Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model[J].{H}Journal of Differential Equations,2010,(12):2889-2905.
  • 7TAO Y,WANG Z A. Computing effects of attraction vs repulsion in chemotaxis[J].Math Models Meth Appl Sci,2013,(01):1-36.
  • 8葛占洪,陈道会.带Logistic源的抛物-椭圆趋化模型解的大时间行为[J].纺织高校基础科学学报,2012,25(4):436-441. 被引量:3
  • 9TAO Y,WINKLER M. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].{H}Journal of Differential Equations,2012,(01):692-715.
  • 10BILER P,HEBISCH W,NADZIEJA T. The Debye system:existence and large time behavior of solutions[J].Nonlin-ear Anal,1994,(09):1189-1209.

二级参考文献10

  • 1TELLO J I,WINKLER M. A chemotaxis system with logistic source[J].Communications in Partial Differential Equations,2007,(06):849-877.
  • 2HILLEN T,PAINTER K J. A user's guide to PDE models for chemotaxis[J].Journal of Mathematical Biology,2009.183-217.
  • 3OSAKI K,TSUJIKAWA T,YAGI A. Exponential attractor for a chemotaxis-growth system of equations[J].Nonlinear Analysis,Series A:Theory Methods,2002.119-144.
  • 4WINKLER M. Chemotaxis with logistic source:very weak global solutions and their boundedness properties[J].Journal of Mathematical Analysis and Applications,2008.708-729.
  • 5AIDA M,OSAKI K,TSUJIKAWA T. Chemotaxis and growth system with singular sensitivity function[J].Nonlinear Analysis:Real World Applications,2005.323-336.
  • 6BILER P. Local and global solvability of some parabolic systems modelling chemotaxis[J].Advances in Mathematical Sciences and Applications,1998.715-743.
  • 7HORSTMANN D,WINKLER M. Boundedness vs.blow-upin a cheotaxis system[J].Journal of Differential Equations,2005.52-107.
  • 8WINKLER M. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source[J].Communications in Partial Differential Equations,2010.1516-1537.
  • 9TAO Y,WINKLER M. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].Journal of Differential Equations,2012.692-715.
  • 10EVANS L C. Partial differential equations[M].New York:AMS,1998.662.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部