摘要
考虑一个抛物-椭圆吸引排斥趋化模型.通过建立合适的熵不等式,利用不动点原理,Lp估计技巧,广义的Gagliardo-Nirenberg插值不等式和Moser迭代,证明了当细胞的初始质量满足条件‖u0‖L1(Ω)≤xαCNG时,该模型存在惟一的整体解.
A parabolic-elliptic attraction-repulsion chemotaxis model is considered. By establishing appro- priate entropy inequality,based on a fixed point argument, LP-estimate technique,the generalized Gagli- ardo-Nirenberg inequality and Moser's iteration, it is proved that the model admits a unique global solu- tion provided the initial cell mass satisfies the condition that ||U0||L2(Ω)≤xaCNG.
出处
《纺织高校基础科学学报》
CAS
2013年第4期474-480,共7页
Basic Sciences Journal of Textile Universities
关键词
趋化性
吸引-排斥
熵不等式
整体存在性
chemotaxis
global existence
attraction-repulsion
entropy inequality