期刊文献+

一类新的预条件USSOR迭代法的比较定理 被引量:3

Comparison theorem of a new preconditioned USSOR iterative method
下载PDF
导出
摘要 提出一种新的预条件矩阵,并给出基于该预条件的USSOR迭代法.比较了系数矩阵为不可约L阵时,在新的预条件下USSOR迭代法和传统USSOR迭代法谱半径的大小.预条件加快了传统的USSOR迭代法的收敛速度,并得到新的比较定理.且新方法的谱半径严格小于传统方法的谱半径.最后通过数值例子验证了所得结论的正确性. A novel preconditioned matrix and a new Un-Symmetrical Successive Over Relaxation (USSOR) itera- rive method base on this preconditioned matrix are proposed in this paper. The spectral radius of the new and the traditional USSOR iterative method were compared when coefficient matrix was irreducible. The result demon- strates that the new method accelerates the speed of convergency. And a new comparison theorem is got, distin- guished with other methods, the comparison inequality of spectral radius is a strict inequality. Finally two nu- merical examples are given to demonstrate the correctness of the new method.
出处 《纺织高校基础科学学报》 CAS 2013年第4期507-510,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(60671063)
关键词 L矩阵 USSOR迭代方法 预条件 谱半径 L-matrix USSOR iterative method preconditioned spectral radius
  • 相关文献

参考文献10

  • 1VARGA R S. Matrix iterative analysis[M].Belin:Spring-Verlag,2000.
  • 2胡家赣.线性代数方程组的迭代解法[M]{H}北京:科学出版社,1991.
  • 3YOUNG D M. Iterative solution of large linear system[M].{H}New York:Academic Press,Inc,1971.
  • 4BERMAN A,PLEMMONS R J. Nonnegative matrices in the mathematical sciences[M].Philadelphia:SIAM Press,1994.27-28.
  • 5LI W. Modified Gauss-Serdel methods and Jacobi type method for Z-matrices[J].{H}Linear Algebra and its Applications,2000.223-240.
  • 6YUN J H,KIM S W. Convergence of the preconditioned AOR method for irreducible L-matrices[J].Applied Mathe-matics and Computation,2008.56-64.
  • 7王丽爽,畅大为,郭煜.预条件USSOR迭代法在L矩阵下的比较结果[J].纺织高校基础科学学报,2012,25(2):173-176. 被引量:3
  • 8冯果忱;于庚蒲;郐继福.矩阵迭代分析导论[M]{H}长春:吉林大学出版社,1991.
  • 9郭煜,畅大为.一类预条件矩阵USSOR迭代方法的比较定理[J].纺织高校基础科学学报,2011,24(4):546-548. 被引量:6
  • 10戴华.矩阵论[M]{H}北京:北京大学出版社,2001.

二级参考文献12

  • 1HAD JID IM OS A, NOU TSOS D,TZOUM AS M. More on modifications and improvements of classical iterative scheme as for M matrix[J]. Liner Algebra Appl, 2003,364: 253-279.
  • 2REINHARD Nabben. A note on comparison theorems for splitting and multi splitting of Hermitian positive definite matrices[J]. Linear Algebra Appl, 1996,233 : 67-80.
  • 3ELSNER L. Comparisons of weak regular splitting and multi splitting methods[J]. Number Math, 1989,56:283-289.
  • 4戴华.矩阵轮[M].北京:北京大学出版社,2001.
  • 5YUN J H. Comparison results of the preconditioned AOR methods for L-matrices[J]. Applied Mathematics and Com- putation,2011,218:3 399-3 413.
  • 6VARGA R S. Matrix iterative analysis[M]. Berlin: Spring,2000.
  • 7YOUNG D M. Iterative solution of large linear system[M]. New York, Academic Press, 1971.
  • 8BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical scienees[M]. Philadelphia: SIAM Press, 1994: 27-28.
  • 9LI W, SUN W. Modified Gauss-Serdel methods and Jaeobi type methods for Z-matrices[J]. Linear Algebra and its Ap- plications, 2000,317,223-240.
  • 10张哲,柳卫东.预条件(I+C_α)的USSOR迭代法收敛性定理[J].纺织高校基础科学学报,2009,22(1):127-129. 被引量:3

共引文献5

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部