期刊文献+

利用旋转算法构建DEA模型生产前沿面 被引量:7

Rotation algorithm on constructing DEA production frontier
原文传递
导出
摘要 传统数据包络分析模型的生产前沿面构造方法较为复杂,为了解决这一问题,提出了一个新的构建DEA生产前沿面的算法,称为旋转法.阐述了旋转算法的含义.分别从二维和高维角度对传统的四类DEA模型的生产前沿面进行构建,并对算法的理论依据进行了证明.通过实际算例证明,相比起传统的方法,比如极点极方向法、Graham扫描法等,旋转法非常简单而且实用价值很广.最后提供了一个关于该算法在实际中的应用——构建决策单元中含有负值的DEA模型,解决了传统DEA模型无法处理决策单元中含有负值的不足. Traditional method of constructing production frontier in data envelopment analysis seems to be much more complex, in order to solve this problem, we propose a new DEA production frontier algorithm, which is called the rotation algorithm. We explain the meaning of rotation algorithm. Respectively, from the two-dimensional and high-dimensional perspective, we build the production frontier of traditional four DEA models, and prove the theoretical basis of the algorithm. Through practical examples, we prove that, compared to traditional methods, such as vertex and extreme direction method, Graham scanning method, rotation algorithm is much simpler and has a very wide practical value. Finally, we apply the rotation algorithm to practice -- Construct a new DEA model dealing with negative data in decision making units, which the traditional DEA model cannot handle.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第1期94-103,共10页 Systems Engineering-Theory & Practice
基金 中央高校基本科研业务费专项资金(13XS26)
关键词 DEA 生产前沿面 凸包络 负值 DEA production frontier convex hull negative data
  • 相关文献

参考文献13

  • 1Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operation Research, 1978, 2: 429-444.
  • 2Seiford L M, Thrall R M. Recent development in DEA: The mathematical programming approach to frontier analysis[J]. Journal of Econometrics, 1990, 46: 7-38.
  • 3Wei Q L, Yan H, Hao G. Characteristics and structures of weak efficient surfaces of production possibility sets[J]. Journal of Mathematical Analysis and Applications, 2007, 327(2): 1055-1074.
  • 4Wei Q L, Yan H. A method of transferring polyhedron between the intersection-form and the sum-form[J]. Computers and Mathematics with Applications, 2001, 41: 1327-1342.
  • 5Graham R L. An efficient algorithm for determining the convex hull of a finite planar set[J]. Information Processing Letters, 1972, 1(4): 132-133.
  • 6Jarvis R A. On the identification of the convex hull of a finite set of points in the plane[J]. Information Processing Letters, 1973, 2(1): 18-21.
  • 7Eddy W F. A new convex hull algorithm for planar sets[J]. ACM Transactions on Mathematical Software (TOMS), 1997, 3(4): 398-403.
  • 8Shamos M I. Geometric complexity[C]// Proceedings of Seventh Annual ACM Symposium on Theory of Computing, ACM, 1975: 224-233.
  • 9Preparata F P. An optimal real-time algorithm for planar convex hulls[J]. Communications of the ACM, 1979, 22(7): 402-405.
  • 10Chand D R, Kapur S S. An algorithm for convex polytopes[J]. Journal of the ACM (JACM), 1970, 17(1): 78-86.

同被引文献57

  • 1魏权龄,李其荣,肖志杰.估计技术进步滞后及超前年限的要素增长型DEA模型[J].数量经济技术经济研究,1991,8(3):28-34. 被引量:16
  • 2王琦,吴冲.企业社会责任财务效应动态性实证分析——基于生命周期理论[J].中国管理科学,2013,21(S2):542-548. 被引量:30
  • 3陈世宗,赖邦传,陈晓红.基于DEA的企业绩效评价方法[J].系统工程,2005,23(6):99-104. 被引量:66
  • 4陈玉清,马丽丽.我国上市公司社会责任会计信息市场反应实证分析[J].会计研究,2005(11):76-81. 被引量:405
  • 5Banker R D,Chames A,Cooper W W. Some models for estimating technical and scale inefficiencies in date envelopment analysis [J]. Managemeiat science, 1984, 30(9) : 1078-1092.
  • 6Cooper W W, Seiford L M and Tone K. Data envel- opment analysis: A comprehensive text with models [M]. Applications, references and DEA-solver, Kluwer academic publishers, Boston. 2000.
  • 7Zhong W, Yuan W, Li S X, et al. The performance evaluation of regional R&D investments in China: An application of DEA based on the first oflficial China e-conomic census data [J]. Omega, 2010(39) :447-455.
  • 8Banker R D, Natarajan R. Evaluating contextual vari- ables affecting productivity using data envelopment anal- ysis[J]. Operations Research, 2008(56) :48-58.
  • 9Guan J C, Chen K H. Measuring the innovation pro- duction process: A cross-region empirical study of China's high-tech innovations [J]. Technovation, 2010 (30) :348-358.
  • 10(美)冯贝塔朗菲.一般系统论基础、发展和应用[M].林康义,魏宏森译.北京:北京清华大学社,1987:56-189.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部