期刊文献+

改进的稀疏字典学习单通道语音增强算法 被引量:12

An Improved Monaural Speech Enhancement Algorithm Based on Sparse Dictionary Learning
下载PDF
导出
摘要 基于K奇异值分解字典学习方法及其非负约束下的修改算法,本文提出一种改进的单通道语音增强算法。该算法将噪声划分为结构化噪声和非结构化噪声两部分。首先通过稀疏字典学习的方法对结构化噪声进行建模,训练出噪声字典;然后,使用所得噪声字典去除带噪语音中的结构化噪声;最后,采用过完备字典和稀疏表示的方法对纯净语音进行提取,去除非结构化噪声。实验结果表明,在平稳或非平稳噪声环境下,本文算法均能有效去除加性噪声,性能优于多带谱减法和基于非负稀疏编码的增强算法。 This paper applies the K-Singular Value Decomposition method and its non-negative variant to enhance the contaminated speech. In the proposed approach, noise is categorized as structured and unstructured noise. Firstly, the noise dictionary is learned from a training noise database. Then, we remove the structured noise iteratively by using the noise dictionary. Finally, the approach adopts sparse and redundant representations over trained dictionary to separate the clean speech from the unstructured noise. Extensive experimental results show that the enhancement method proposed out- performs state-of-the-art methods like muhi-band spectral subtraction and the non-negative sparse coding based noise reduc- tion algorithm.
出处 《信号处理》 CSCD 北大核心 2014年第1期44-50,共7页 Journal of Signal Processing
基金 江苏省自然科学基金(BK2012510)
关键词 语音增强 字典学习 过完备字典 稀疏表示 Speech enhancement Dictionary learning Over-complete dictionary Sparse representation
  • 相关文献

参考文献13

  • 1Michal Aharon,Michael Elad,Alfred M.Bruckstein. The K-SVD:An algorithm for designing of overcomplete dictionaries for sparse and representation[J].{H}IEEE Transactions on Signal Processing,2006,(11):4311-4322.
  • 2P.O.Hoyer. Non-negative sparse coding[A].2002.557-565.
  • 3Elad M,Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J].{H}IEEE Transactions on Image Processing,2006,(12):3736-3745.
  • 4Benesty J,Makino S,Chen J. Speech enhancement[M].Berlin Germany:Springer,2005.
  • 5Christian D.Sigg,Tomas Dikk,Joachim M.Buhmann. Speech enhancement with sparse coding in learned dictionaries[A].2010.4758-4761.
  • 6Christian D.Sigg,Tomas Dikk,Joachim M.Buhmann. Speech enhancement using generative dictionary Learning[J].IEEE Transactions on audio speech and language processing,2012,(06):1698-1712.
  • 7Michal Aharon,Michael Elad,Alfred M. K-SVD and its Non-Negative Variant for Dictionary Design[A].SPIE,Belingham,WA,2005.
  • 8Kristian Timm Andersen. Wind Noise Reduction in Single Channel Speech Signals[D].Technical University of Demark,2008.
  • 9P.O.Hoyer. Non-negative matrix factorization with sparse constraints[J].{H}JOURNAL OF MACHINE LEARNING RESEARCH,2004.1457-1469.
  • 10K.Wilson,B.Raj,P.Smaragdis,A.Divakaran. Speech denoising using nonnegative matrix factorization with priors[A].2008.4029-4032.

二级参考文献15

  • 1Benesty J,Makino S,Chen J.Speech enhancement[M].Berlin,Germany:Springer,2005.
  • 2Hao J C,Attias H,Nagarajan S,Lee T W,Sejnowski T J.Speech enhancement,gain,and noise spectrum adaptation using approximate bayesian estimation[J].IEEE Transactions on Audio,Speech,and Language Processing,2009,17(1):24-37.
  • 3Yoshioka T,Nakatani T,Okuno H G.Noisy speech enhancement based on prior knowledge about spectral envelope and harmonic structure[A].2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)[C],2010:4270-4273.
  • 4Tantibundhit C,Pernkopf F,Kubin G.Joint time-frequency segmentation algorithm for transient speech decomposition and speech enhancement[J].IEEE Transactions on Audio,Speech,and Language Processing,2010,18(6):1417-1428.
  • 5Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41:3397-3415.
  • 6Gowreesunker B V,Tewfik A H.Learning sparse representation using iterative subspace identification[J].IEEE Transactions on Signal Processing,2010,58 (6):3055-3065.
  • 7Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
  • 8Donoho D,Johnstone I M.Ideal spatial adaptation by wavelet shrinkage[J].Biomet rika,1994,81(3):425-455.
  • 9Chen S S,Donoho D L,and Saunders M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 10Griffin A,Tsakalides P.Compressed sensing of audio signals using multiple sensors[A].in Proc.16th European Signal Processing Conference (EUSIPCO'08)[C],Lausanne,Switzerland,2008.

共引文献13

同被引文献60

  • 1王水平,唐振民,陈北京,蒋晔.复杂环境下语音增强的复平面谱减法[J].南京理工大学学报,2013,37(6):857-862. 被引量:6
  • 2刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 3张雄伟,等.现代语音处理技术及应用[M].北京:机械丁业出版社,2009.
  • 4LI W F, ZHOU Y, POH N, et al. Feature denoising using joint sparse representation for in-car speech recognition [J]. IEEE Signal Processing Letters, 2013, 20(7): 681-684.
  • 5SIGG C, DIKK T, BUHMANN J M. Speech enhancement using generative dictionary learning [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(6): 1698-1712.
  • 6TROPP J, GILBERT A. Signal recovery from random measure- ments via orthogonal matching pursuit [J]. Transactions on In- formation Theory, 2007, 53(12): 4655-4666.
  • 7AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algo- rithm for designing overcomplete dictionaries for sparse repre- sentation [J]. IEEE Transactions on Signal Processing, 2006, 54(11), 4311-4322.
  • 8Loizou P C. Speech Enhancement: Theory and Practice [ M ]. Signal Processing and Communications, 2007.
  • 9Boll S. Suppression of acoustic noise in speech using spec- tral subtraction [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(2) :113-120.
  • 10Hung Wei Tseng, Srikanth Vishnubhotla, et al. A novel single channel speech enhancement approach by combi- ning wiener filter and dictionary learning [ C ]//Vancou- ver: Acoustics, Speech and Signal Process ( ICASSP), IEEE, 2013:8653-8657.

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部