期刊文献+

利用合同变换矩阵的时间结构信号盲分离算法 被引量:3

Blind separation algorithm for sources with temporal structure based on contract transformation matrix
下载PDF
导出
摘要 在信号处理领域中,很多源信号具有时间结构,即时间信号或时间序列。针对这种具有时间结构的盲源分离问题,本文利用源信号与观测信号的自相关矩阵之间存在的一种合同关系,即分离矩阵相当于将一个观测信号的自相关矩阵化为对角矩阵的合同变换矩阵,基于这种合同变换矩阵的思想,改进了时间结构独立成分分析算法,将求分离矩阵转化为求各个时延下合同变换矩阵集合的交集。最后,通过MATLAB对仿真模拟源信号及真实语音信号两个实例进行分离实验,验证了该分离算法的有效性。 In the field of signal processing, there are many source signals with temporal structure, i.e. time signals or time series. In the procedure of dealing this blind source separation problem, there is a contractual relationship between the autocorrelation matrix of the source signals and the autoeorrelation matrix of the observed signals under the linear instantane- ous mixing model, in other words, the separation matrix is a contract transformation matrix which transforms the autoeorre- lation matrix of the observed signals into a diagonal matrix, which is corresponding to independent sources. Based on this relationship, we improve the Independent Component Analysis (ICA) algorithm of time signals, that is, the intersection of the contract transformation matrix sets under each delay is the required separation matrix. Finally, the simulation results for analog source signals and real sound signals show that the new algorithm is valid and efficient.
作者 徐娅 刘国庆
出处 《信号处理》 CSCD 北大核心 2014年第1期58-64,共7页 Journal of Signal Processing
基金 江苏省自然科学基金(BK2011238) 南京气象雷达开放实验室研究基金(BJG201103)
关键词 盲源分离 时间结构 独立成分分析 合同变换矩阵 blind source separation temporal structure independent component analysis contract transformation matrix
  • 相关文献

参考文献3

二级参考文献84

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2张远达.线性代数原理[M].上海:上海教育出版社,1981.470-473.
  • 3[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 4[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 5[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 6[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 7[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 8[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 9[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 10[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.

共引文献235

同被引文献50

  • 1王楠,杜博,张良培,胡文斌.基于约束独立成分分析的高光谱图像指纹提取[J].华中科技大学学报(自然科学版),2013,41(S2):162-166. 被引量:1
  • 2Xie Shengli Tan Beihai Fu Yuli.Blind signal separation of underdetermined mixtures based on clustering algorithms on planes[J].Progress in Natural Science:Materials International,2007,17(6):670-674. 被引量:2
  • 3汪宏年,陶宏根,王桂萍,张玲玲.双感应测井资料的快速近似迭代反演[J].地球物理学报,2007,50(5):1614-1622. 被引量:14
  • 4Castella M, Rhioui S, Moreau E, Pesquet J-C. Quadratic higher-order criteria for iterative blind separation of a MI- MO convolutive mixture of sources[J]. IEEE Trans. Sig- nal Process., 2007, 55(1): 218-232.
  • 5Dubroca R, De Luigi C, Castella M, Moreau E. A gen- eral algebraic algorithm for blind extraction of one source in a MIMO convolutive mixture [ J ]. IEEE Trans. Signal Process., 2010, 58(5): 2484-2493.
  • 6Castella M, Moreau E. New kurtosis optimization schemes for MISO equalization [ J ]. IEEE Trans. Signal Process- ing, 2012, 60(3): 1319-1330.
  • 7Adib A, Moreau E, Aboutajdine D. Source separation contrasts using a reference signal [ J ]. IEEE Signal Pro- cessing Letters, 2004, 11(3) : 312-315.
  • 8Castella M, Rhioui S, Moreau E, Pesquet J-C. Source separation by quadratic contrast functions: a blind ap- proach based on any higherorder statistics [ C ]// in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Pro- cessing (ICASSP). Philadelphia, USA, 2005.
  • 9Castella M, Moreau E. A new optimization method for refer- ence-based quadratic contrast functions in a deflation sce-nario [ C ]//in Proc. IEEE Int. Conf. Acoust., Speech Sig- nal Process. (ICASSP). Taipei, Taiwan, R. O. C. , 2009: 3161-3164.
  • 10Castella M, Moreau E. A new method for kurtosis maxi- mization and source separation[ C]// in Proc. IEEE Int. Conf. Acoust. , Speech Signal Process. (ICASSP). Dal- las, TX, 2010:2670-2673.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部