期刊文献+

4类图完美匹配数目的嵌套递推求法

Four Types of Nested Recursive Methods for Finding Graph Perfect Matching Numbers
下载PDF
导出
摘要 用划分、求和再递推的方法分别给出了图3-n3LC4,3-nBC4,3-nL4和1-nXC4的完美匹配数目的计算公式,所给出的方法可以计算出许多特殊图的所有完美匹配的数目.并利用所得到的计算公式计算出了一类图的Hamilton圈的数目. The calculating formula of the perfect matching for graphs 3 - n3LC4,3 - rtBC4, 3 - nL4 and 1 - nXC4 is made by applying differentiation, summation and re-recursion. By the method presented in this paper, the numbers of all perfect matchings of many particular graphs can be calculated. The number of Hamilton cycles of some graphs has been calculated.
作者 唐保祥 任韩
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期17-21,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11171114)
关键词 完美匹配 线性递推式 特征方程 HAMILTON圈 perfect matching linear recurrence relation characteristic equation Hamilton cycle
  • 相关文献

参考文献13

  • 1Hall G G. A graphic model of a class of molecules[J].International Journal of Mathematical Education in Sci-ence and Technology,1973,(3):233-240.
  • 2Cyvin S J,Gutman I. Kekuléstructures in Benzennoid hydrocarbons[M].Berlin:Springer Press,1988.
  • 3Kasteleyn P W. Graph theory and crystal physics[A].{H}London,UK:Academic Press,1967.43-110.
  • 4Ciucu M. Enumeration of perfect matchings in graphs with reflective symmetry[J].Journal of Combinatorial Theory:Series A,1997.87-97.
  • 5Fischer I,Little C H C. Even circuits of prescribed clockwise parity[J].The Electronic Journal of Combinat-orics,2003.1-20.
  • 6Jockusch W. Perfect mathings and perfect squares[J].Journal of Combinatorial Theory:Series A,1994.100-115.
  • 7Kasteleyn P W. Dimmer statistics and phase transition[J].{H}Journal of Mathematical Physics,1963.287-293.
  • 8Lovász L,Plummer M. Matching theory[M].New York:North-Holland Press,1986.
  • 9Yan W G,Zhang F J. Enumeration of perfect matchings of a type of Cartesian products of graphs[J].{H}Discrete Applied Mathematics,2006.145-157.
  • 10吴钰涵,尤利华.一类重要的本原(带号)有向图的指数值[J].华南师范大学学报(自然科学版),2011,43(3):44-48. 被引量:4

二级参考文献56

  • 1林泓,林晓霞.若干四角系统完美匹配数的计算[J].福州大学学报(自然科学版),2005,33(6):704-710. 被引量:29
  • 2SHEN J. On a problem of Lewin [ J ]. Linear Algebra and Its Applications, 1998,274:411 - 426.
  • 3BRUALDI R A , RYSER H J. Combinatorical matrix theo- ry[ M ]. Combridge: Combridge Univ Press, 1991 : 53 - 87.
  • 4BRUALDI R A, ROSS J A. On the exponent of a primitive nearly reducible matrix [ J ]. Math of Operations Research, 1980,5(2) :229 -241.
  • 5LIU B L. Combinatorial matrix theory[ M]. Beijing: Sci- ence Press,2005 : 126 - 142.
  • 6BRUALDI R A, LIU B L. Generalized exponents of primi- tive digraphs [ J ]. J Graph Theory, 1990,14:483 - 499.
  • 7LIU B L. Generalized exponents of primitive, nearly re- ducible matrices[ J]. Ars Combin, 1999,51 : 229 - 239.
  • 8YOU L H, SHAO J Y,SHAN H Y. Bounds on the bases of irreducible generalized sign pattern matrices [ J 3. Linear Algebra Appl,2007 ,427 :285 - 300.
  • 9WANG L Q, MIAO Z K, CHAO Y. Local bases of primi- tive non - powerful signed digraphs [ J ]. Discrete Math, 2009,309:748 - 754.
  • 10LI Q, LIU B L, STUART J. Bounds on the k - th general- ized base of a primitive sign pattern matrix [ J ]. Linear and Multilinear Algebra,2010,58:355 - 366.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部