期刊文献+

平面系统中心与焦点判定问题的若干注释 被引量:1

Remarks on the center and focus problem for planar systems
下载PDF
导出
摘要 常微分方程理论是数学的一个十分重要的学科,其主要任务是研究解的性态,其中平面系统中心与焦点的判定问题是常微分方程定性理论的重要内容之一.对于高维(包括无穷维)系统,在一定条件下可以通过中心流形定理降维至二维自治系统,因此,平面系统中心与焦点的判定问题是最基本的内容.微分方程定性理论著作,都会不同程度地论过这一问题.针对这一问题进行总结、思考和研究,对已有概念做一些引伸,对已有结果给出新的认识与证明,提出一些新的结论.这些内容都很难在现有文献中找到. The center and focus problem is one of the main topics of the qualitative theory of ordinary differential equations. Systems in higher dimensional spaces can be reduced to systems in the plane with the help of the center manifold theorem. Therefore, it is fundamental to study the center and focus problem for planar systems. One can find the materials in related text books for graduate students of mathematics. In this article,we give a survey and present some further studies on the problem.
作者 韩茂安
出处 《上海师范大学学报(自然科学版)》 2013年第6期565-579,548,共15页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(11271261)
关键词 POINCARE映射 中心 可积性 首次积分 周期函数 Poincaremap center integrability first integral period function
  • 相关文献

参考文献21

  • 1韩茂安;朱德明.微分方程分支理论[M]{H}北京:煤炭工业出版社,1994.
  • 2韩茂安.动力系统的周期解与分支理论[M]{H}北京:科学出版社,2002.
  • 3HALE J K,KOCAK H. Dynamics and Bifurcations[M].{H}New York:Springer-Verlag,1991.
  • 4赵爱民;李美丽;韩茂安.微分方程基本理论[M]{H}北京:科学出版社,2013.
  • 5HAN M A.Bifurcation Theory of Limit Cycles[M]{H}北京:科学出版社,2013.
  • 6HAN M A. Bifurcation Theory of Limit Cycles of Planar Systems[A].Elsevier,2006.
  • 7韩茂安;周盛凡;邢业朋.常微分方程[M]{H}北京:高等教育出版社,2011.
  • 8HAN M A,ROMANOVSKI V G. Limit cycle bifurcations from a nilpotent focus or enter of planar systems[J].{H}ABSTRACT AND APPLIED ANALYSIS,2012.ArticleID720830:28.
  • 9BAUTIN N N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type[J].Transl Amer Math Soc,1954.397-413.
  • 10CHICONE C. Ordinary Differential Equations with Applications[M].Spinger,1999.

二级参考文献8

  • 1Chicone C. Ordinary differential equations with applications[M]. New York: Springer, 1999.
  • 2Han Maoan. Bifurcation theory of limit cycles of planar systems [ M]. Canada A. , Drabek P. and Fonda A. Handbook of differential equations: ordinary differential equations, Vol. 3. Amsterdam: Elsevier, 2006: 341--433.
  • 3Shui-Nee Chow, Jack K Hale. Methods of bifurcation theory[M]. New York: Springer Verlag, 1982.
  • 4Hale J, Kocak H. Dynamics and bifurcations[M]. New York: Springer Verlag, 1991.
  • 5Wiggins S. Introduction to applied nonlinear dynamical systems and chaos [M]. New York: Springer Verlag, 1990.
  • 6Kuznetsov Y A. elements of applied bifurcation theory[M]. New York: Springer-Verlag, 1995.
  • 7Shilnikov L P, Shilnikov A L, Turaev D V, Chua L O. Methods of qualitative theory in Nonliear dynamics, Part Ⅱ[M]. Singapore: World Scientific, 2001.
  • 8桑森 G,康蒂著.非线性微分方程[M].黄启昌,金成桴,史希福,译.北京:科学出版社,1983.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部