期刊文献+

基于视觉感受野的自适应背景抑制方法 被引量:8

Adaptive background suppression method based on visual receptive field
下载PDF
导出
摘要 在河流水面成像测速的应用中,表现为弱小目标的水流示踪物易受倒影、耀光等复杂背景噪声的干扰而引起较大的位移估计误差。对此,首先分析了近红外河流水面图像中目标、背景及噪声的分布及统计特性并建立数学模型。然后在生物侧抑制现象的启发下提出了一种基于视觉感受野双高斯差(DOG)模型的自适应背景抑制方法。利用水面图像中目标和噪声灰度分布的先验知识以及兴奋性与抑制性作用相抵的约束关系选取模型参数,以达到局部最优的增强效果。实验表明,DOG模型作为一个带通滤波器,在增强目标、抑制背景和滤除噪声的综合性能方面优于传统的空域高通滤波器。获得的图像不仅具有良好的视觉效果,同时满足了后续运动矢量估计对相关运算信噪比的需求。 In the application of fiver surface imaging velocimetry, the water flow tracers shown as dim and small targets are easily affected by complex background noises, such as shadows and reflections, which leads to large errors in dis- placement estimation. To solve this problem, firstly the distribution and statistics characteristics of target, background and noise in NIR fiver surface images are analyzed to build the mathematical model. Then, inspired by the biological phenomenon of lateral inhibition, an adaptive background suppression method is presented based on the visual receptive field difference of Gaussian (DOG) model. To achieve local optimization of enhancement,the model parameters are de- termined using the prior knowledge of the intensity distributions of targets and noises in the fiver surface images, and the constraint relation that the excitatory and inhibitory effects compensate for each other;and the local optimization en- hancement effect is achieved. The experiment results show that, as a band-pass filter, the DOG model is superior to tra- ditional spatial high-pass filter in the performance of target enhancement, background suppression and noise fihering. The images obtained with the proposed method not only have good visual effects, but also meet the requirement of suffi- cient signal-noise ratio (SNR) for the correlation operations in subsequent motion vector estimation.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第1期191-199,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61263029 61374019) 江苏省自然科学基金(BK20130851)资助项目
关键词 河流水面 光学环境 近红外成像 背景抑制 视觉感受野 双高斯差 river surface optical environment NIR imaging background suppression visual receptive field differ-ence of Gaussian (DOG)
  • 相关文献

参考文献16

  • 1徐立中,张振,严锡君,王慧斌,王鑫.非接触式明渠水流监测技术的发展现状[J].水利信息化,2013(3):37-44. 被引量:33
  • 2MUSTE M,FUJITA I,HAUET A. Large-scale particle image velocimetry for measurements in riverine environments [ J ]. Water Resources Research ,2008,44 (W00D19) : 1-14.
  • 3HAUET A, CREUTIN J D, BELLEUDY P. Sensitivity study of large-scale particle image velocimetry measure- ment of river discharge using numerical simulation [ J ]. Journal of Hydrology ,2008,349 : 178-190.
  • 4LE COZ J, HAUET A, PIERREFEU G, et al. Performance of image-based velocimetry (LSPIV) applied to flash-flood dis- charge measurements in Mediterranean rivers [ J ]. Journal of Hydrology,2010,394(1-2) :42-52.
  • 5FUJITA I, AYA S. Refinement of LSPIV technique for monitoring river surface flows [ C ], ASCE 2000 Joint Conference. on Water Resources Engineering and Water Resources Planning & Management, Minneapolis,2000.
  • 6HARPOLD A A,MOSTAGHIMI S,VLACHOS P P,et al. Stream discharge measurement using a large-scale particle image velocimetry (LSPIV) prototype [ J ]. Transaction of the ASABE ,2006,49 (6) : 1791-1805.
  • 7JODEAU M, HAUET A, PAQUIER A, et al. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions [ J ]. Flow Measure- ment and Instrumentation,2008,19(2) : 117-127.
  • 8TSUBAKI R, FUJITA I, TSUTSUMI S. Measurement of the flood discharge of a small-sized river using an existing digital video recording system[ J ]. Journal of Hydro-Envi- ronment Research,2011,5:313-321.
  • 9BECHLE A J,WU C H, LIU W C,et al. Development and application of an automated river-estuary discharge ima- ging system [ J ]. Journal of Hydraulic Engineering, 2012, 138(4) :327-339.
  • 10张振,严锡君,樊棠怀,王鑫,徐立中.近红外成像的便携式大尺度粒子图像测速仪[J].仪器仪表学报,2012,33(12):2840-2850. 被引量:13

二级参考文献92

共引文献69

同被引文献93

  • 1朱贺,李臣明,张丽丽,沈洁.融合图模型及形态模型的SAR图像中河道提取[J].遥感技术与应用,2015,30(2):337-344. 被引量:2
  • 2吴元昊,于前洋.用傅里叶相移特性估计位移[J].光电工程,2005,32(8):73-76. 被引量:4
  • 3李小平,边肇祺,汪云九.二维Gabor滤波器的快速实现[J].自动化学报,1989,15(2):136-141. 被引量:3
  • 4Zhen Zhang,Xin Wang,Tanghuai Fan,Lizhong Xu.River surface target enhancement and background suppression for unseeded LSPIV[J].Flow Measurement and Instrumentation.2013
  • 5Ryota Tsubaki,Ichiro Fujita,Shiho Tsutsumi.Measurement of the flood discharge of a small-sized river using an existing digital video recording system[J].Journal of Hydro-environment Research.2011(4)
  • 6J. Le Coz,A. Hauet,G. Pierrefeu,G. Dramais,B. Camenen.Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers[J].Journal of Hydrology.2010(1)
  • 7M. Muste,H.-C. Ho,D. Kim.Considerations on direct stream flow measurements using video imagery: Outlook and research needs[J].Journal of Hydro-environment Research.2010(4)
  • 8Lee Y. A Neural Network Model of Frog Retina: A Discrete Time-Space Approach. Massachusetts Amherst: University of Massachusetts Amherst, 1986, 10: 415-426.
  • 9Nishio K, Yonezu H, Furukawa Y. Analog integrated circuit for motion detection with simple-shape recognition based on frog vision system. Optical Review, 2007, 14(5): 271-281.
  • 10Xiao S S, Gao N. Research on visual invariance based on dynamic receptive field. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Wuhan, China: IEEE, 2008, 1: 273-276.

引证文献8

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部