摘要
选题策略是计算机化自适应测验重要的组成部分,其好坏直接关系到测验的准确性、安全性、效率和测验信度,而分层法又是其中极其重要的一种方法.针对在分层法中按区分度分层(a-STR)和按最大信息量分层(MIS)的曝光率依然较大的缺点,提出了按区分度近似分布分层法(A-SDS)和按最大信息量近似分布分层法(MI-SDS)2种方法.通过Matlab模拟实验表明:在测验精度和效率与原方法接近的情况下,新方法比a-STR和MIS方法较明显地降低了项目的曝光率.
Item selection method is a key part of computerized adaptive testing, it will have a direct impact on accu- racy, safety, efficiency and reliability of the testing. Besides, stratified method is a most important part of item selec- tion method. For the relatively high item exposure rate shortcoming against α-stratified (α-STR)and maximum infor- mation stratification(MIS) method, two kinds of methods are proposed : similar distributions of discrimination param- eters/maximum information stratification (A-SDS/MI-SDS). The results of the Matlab simulation study show that the new item selection methods obtain lower average exposure rates than α-STR and MIS methods while maintaining the approximate accuracy and efficiency of testing.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2013年第6期652-656,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(30860084
31160203
31100756
31360237
31300876)
国家社会科学基金(12BYY055)
江西省教育厅科技计划(GJJ13207
GJJ13227
GJJ13226
GJJ13208
GJJ13209
13JY01)资助项目
关键词
计算机化自适应测验
选题策略
按区分度近似分布分层法
按最大信息量近似分布分层法
computerized adaptive testing
item selection method
similar distributions of discrimination parameters stratification
similar distributions of maximum information stratification