摘要
建立了具有缺陷产品和库存能力约束模糊报童问题的期望值模型(EVM)、机会约束规划模型(CCP)和相关机会规划模型(DCP)。借助可信性测度理论,推导了EVM模型的期望利润函数及其性质,并利用有限维变分不等式获得了该模型最优订购策略;结合模糊模拟技术和遗传算法,设计了求解CCP和DCP模型的混合智能算法,并引入了神经元网络以加速计算;通过数值算例验证了算法的有效性,并对缺陷率、置信水平、目标利润以及需求的模糊性进行了灵敏度分析。计算结果表明:随产品缺陷率变大,产品最优订购量增加,利润减少;随着置信水平的降低,产品的最优订购量和最大利润将增加。当决策者的目标利润升高时,产品最优订购量增加,实现目标的风险亦增大;当需求的模糊性增大时,最大利润或实现目标利润的机会将降低。
In this paper, we built the expected value model, chance constrained programming model and derivative chance programming model of the fuzzy newsboy problem that considered product defect and inventory capacity constraint and through calculation, found that the optimal order quantity rose with the product defective rate yet the profit level decreased in the process and when the confidence level decreased, the optimal order quantity and the maximum profit would increase. Also we found that when the target profit level of the decision- maker rose, the optimal product order quantity also rose but the risk in realizing the target also rose; for more fuzzy demand, the chance to realize the maximum profit or the target profit would decrease.
出处
《物流技术》
北大核心
2013年第11期148-151,共4页
Logistics Technology
基金
国际(地区)合作与交流项目(71311120090)
国家自然科学基金资助项目(71071082
71371102)
山东省自然科学基金项目(ZR2012GM002)
关键词
缺陷产品
模糊报童问题
期望值模型
机会约束规划模型
相关机会规划模型
defective product
fuzzy newsboy problem
expected value model
chance constrained programming model
derivative chance programming model