期刊文献+

边界节点法计算二维瞬态热传导问题 被引量:6

Boundary Knot Method for 2D Transient Heat Conduction Problems
下载PDF
导出
摘要 采用边界节点法(BKM)结合双重互易法(DRM)求解二维瞬态热传导问题.采用差分格式处理时间变量,可将原瞬态热传导方程转化为一系列非齐次修正的Helmholtz方程.随后,方程的解可分为特解和齐次解两部分计算,引入双重互易法在区域内部配点求解方程的特解,采用边界节点法仅需边界配点求解方程的齐次解.给出的数值算例显示该方法计算精度高,适用性好,具有很好的稳定性和收敛性,适合求解瞬态热传导问题. The boundary knot method (BKM) in conjunction with the dual reciprocity method (DRM) was introduced to solve 2D transient heat conduction problems. With the finite differ- ence scheme applied to deal with the time derivative term, the transient heat conduction equa- tion was converted to a set of nonhomogeneous modified Helmholtz equations. Then the numer- ical solution to the nonhomogeneous problems was divided into two parts: the particular solu- tion and the homogeneous solution. The DRM with few inner interpolation nodes was employed to get the particular solution, and the BKM with boundary-only nodes used to obtain the homo- geneous solution. Numerical results show that the present combined method has the merits of high accuracy, wide applicability, good stability and rapid convergence, which were appealing to solving transient heat conduction problems.
出处 《应用数学和力学》 CSCD 北大核心 2014年第2期111-120,共10页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展计划(973计划)(2010CB832702) 国家杰出青年基金(11125208) 国家自然科学基金(11372097 11302069) 高等学校学科创新引智计划("111"计划)(B12032)~~
关键词 瞬态热传导 边界节点法 双重互易法 差分格式 修正的Helmholtz方程 transient heat conduction boundary knot method dual reciprocity method difference scheme modified Helmholtz equation
  • 相关文献

参考文献23

  • 1Burris K W, Beardsley M B, Chuzhoy L. Component having a functionally graded material coating for improved performance[P]. US Patent: 6087022, 2000-7- 1 I.
  • 2Renner E. Thermal engine[P]. US Patent: 3937019,1976-2-10.
  • 3BruchJ C, Zyvoloski G. Transient two-dimensional heat conduction problems solved by the finite element method[J]. InternationalJournal for Numerical Methods in Engineering, 1974,8(3): 481-494.
  • 4BlobnerJ, Bialecki R A, Kuhn G. Transient non-linear heat conduction-radiation problems-a boundary element formulation[J]. InternationalJournal for Numerical Methods in Engi?neering, 1999, 46 ( 11): 1865-1882.
  • 5Li Q H, Chen S S, Kou G X. Transient heat conduction analysis using the MLPG method and modified precise time step integration method[J].Journal of Computational Physics, 2011, 230(7) : 2736-2750.
  • 6Valtchev S S, Roberty N C. A time-marching MFS scheme for heat conduction problems[J] . Engineering Analysis With Boundary Elements, 2008, 32 ( 6) : 480-493.
  • 7JirousekJ, Qin Q H. Application of hybrid- Trefftz element approach to transient heat conduc?tion analysis[J]. Computers & Structures, 1996, 58( 1): 195-201.
  • 8Brebbia C A, TellesJ C F, Wrobel L C. Boundary Element Techniques: Theory and Applica?tions in Engineering[M]. Berlin: Springer-Verlag, 1984.
  • 9欧阳华江.广义热传导方程有限元算法的计算准则[J].应用数学和力学,1992,13(6):563-571. 被引量:3
  • 10Wang H, Qin Q, Kang Y. A meshless model for transient heat conduction in functionally gra?ded materials[J]. Computational Mechanics, 2006, 38 ( 1) : 51-60.

二级参考文献7

共引文献2

同被引文献75

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部