期刊文献+

使用特征融合的多级别MS-PF目标跟踪算法

Multi-level MS-PF Tracking Algorithm Using Feature Fusion
下载PDF
导出
摘要 提出一种改进的结合均值漂移与粒子滤波(MS-PF)的跟踪算法,通过分级策略将目标跟踪分为直接跟踪、微调和搜索三个级别,实现了均值漂移和粒子滤波的动态结合.针对传统跟踪算法特征单一的缺陷,在目标跟踪过程中自适应的融合了颜色和纹理特征,同时引入粒子群优化算法对粒子滤波进行优化.实验结果表明,采用分级的MS-PF算法能对粒子的产生和数量进行严格控制,提高了算法的实时性和通用性,在复杂环境中,尤其是在光照发生变化时,基于特征融合的思想使得算法更具鲁棒性. An improved tracking method which combined with the mean shift and particle filter ( MS-PF ) is proposed. It implements a dynamic combination of mean shift and particle filter by using grading strategy, tracking will be divided into three levels include di- rect tracking, fine adjustment and searching according to specific cases. The tracking process is based on Adaptive fusion of color and texture features, and introduces particle swarm optimization algorithm to optimize the particle filter. The experimental results show that using the graded MS-PF algorithm can implement strict control on the generation and number of particles, wh/ch improves real- time capability and universality of this algorithm. Meanwhile, feature fusion strategy makes the algorithm more robust, especially in some complex environments.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第2期397-402,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60973113)资助 湖南省自然科学基金项目(12JJ6057)资助 湖南省教育厅科研项目(11C0035)资助 长沙市科技计划项目(K1203015-11)资助 湖南省标准化战略项目(2011031)资助
关键词 均值漂移 粒子滤波 分级策略 特征融合 目标跟踪 mean shift particle filter multi-level feature fusion target tracking
  • 相关文献

参考文献2

二级参考文献74

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 3侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 4LI Shan,LEE M C.Fast visual tracking using motion saliency in video[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2007).Honolulu,USA,2007:1073-1076.
  • 5WREN C R,AZARBAYEJANI A,DARREL L,PENTLAND A P.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 6YUAN Xiaotong,YANG Shutang,ZHU Hongwen.Region tracking via HMMF in joint feature-spatial space[C]//IEEE Workshop on Motion and Video Computing.(WACV/MOTIONS '05).Breckenridge,CO,USA,2005:72-77.
  • 7NICKELS K,HUTCHINSON S.Model-based tracking of complex articulated objects[J].IEEE Transactions on Robotics and Automation,2001,17(1):28-36.
  • 8LIN W C,LIU Yanxi.A lattice-based MRF model for dynamic near-regular texture tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):777-792.
  • 9JANG D,CHOI H.Moving object tracking using active models[C]//International Conference on Image Processing(ICIP 98).Chicago,USA,1998:648-652.
  • 10WEN Zhen,HUANG T S.Enhanced 3-D geometric-model-based face tracking in low resolution with appearance model[C]//IEEE International Conference on Image Processing(ICIP 2005).Genoa,Italy,2005:350-353.

共引文献277

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部