期刊文献+

图像分割中空间一致性和无监督聚类算法应用 被引量:3

Space Consistency and Unsupervised Clustering Algorithm Application in Image Segmentation
下载PDF
导出
摘要 图像空间结构中的图像一致性和无监督聚类信息在图像分割过程中有着非常重要的作用,提出应用图像空间一致性和无监督聚类算法来达到快速执行图像分割的新算法.首先,利用概率树结构针对目标图像进行图像分割过程中形成的过分割区域,并使得这些区域能够达到理想边缘部分;然后,将用基于概率的无监督图像分割框架来处理分割区域.概率树结构结合了以往传统树结构的相关优点,能够更加自然地针对对象的相关边界进行框架建模.本文提出的算法不需要在每次迭代执行过程中更新相关自适应结构,从而可以大大减少计算所需要的时间.通过非参数密度估计技术结合传统的精确反馈框架,此类评价方法针对人类对象而言具有更为强大的边界不一致. The structure of the image space image consistency and unsupervised clustering information, has a very important role in the process of image segmentation, this paper presents the application of image space consistency and unsupervised clustering algorithm to achieve the rapid implementation of a new algorithm for image segmentation. First, the use of a probability tree structures formed over divided regions for the target image,the image segmentation process, and makes these areas to be able to achieve the desired edge por- tion; unsupervised image segmentation framework based on the probability of then will be used to process the divided regions. Proba- bility tree structure combines the advantages of the traditional tree structure in the past and more natural framework for modeling object boundary. The proposed algorithm does not need to be updated in each iteration during the execution of the adaptive structures, which can greatly reduce the time required for the calculation. Nonparametric density estimation techniques combined with accurate feedback framework, the type of evaluation method for human subjects with a more powerful boundary inconsistency.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第2期403-406,共4页 Journal of Chinese Computer Systems
基金 湖南省大学生研究性学习和创新性实验计划基金项目(湘教通[2013]191号501)资助 湖南省科技计划项目(2012FJ3005)资助 湖南省科技计划项目(2012GK3056)资助 湖南省教育厅科研项目青年项目(12B005)资助 教育部重点科研项目(208098)资助
关键词 图像分割 概率树结构 无监督图像分割框架 图像一致性 image segmentation probability tree structure unsupervised image segmentation framework image consistency
  • 相关文献

参考文献2

二级参考文献23

  • 1王璐,蔡自兴.改进的快速FCM算法[J].小型微型计算机系统,2005,26(10):1774-1777. 被引量:7
  • 2丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 3Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advances and prospects [J]. Pattern Recognition, 2001, 34(12): 2259-2281.
  • 4Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters[J]. Journal of Cybernetics, 1974, 3(3):32-57.
  • 5Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York : Plenum Press, 1981.
  • 6Trivedi M M, Bezdek J C. Low-level segmentation of aerial images with fuzzy clustering[J]. IEEE Trans System Man Cybern, 1986, SMC-16(9): 589- 598.
  • 7Pal N R, Bezdek J C. Complexity reduction for"large image " processing[J]. IEEE Transactions on Systems, Man and Cybernetics, 2002, B32(5):598-611.
  • 8Thitimajshima P. A new modified fuzzy C-means algorithm for multispectral satellite images segmentation[C]. IEEE 2000 International Proceedings, IGARSS, 2000,4: 1684-1686.
  • 9Eschrieh S, Ke Jing-wei, Hall L O, et al. Fast accurate fuzzy clustering through data reduction[J]. IEEE Transactions on Fuzzy Systems, 2003, 11 (2): 262-270.
  • 10Rafael C Gonzalez, Richard E Wood. Digital image process second edition[M]. Beijing: Publishing House of Electronics Industry, 2002,125-235.

共引文献11

同被引文献130

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部