期刊文献+

内生真菌感染对禾草宿主生境土壤特性和微生物群落的影响 被引量:13

Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat
原文传递
导出
摘要 以羊草(Leymus chinensis)-内生真菌共生体为研究对象,分别在野外样地和室内盆栽两种实验条件下研究了内生真菌感染对土壤特性和微生物群落结构的影响。结果显示:在处理时间较长并伴随有枯落物分解的羊草样地中,内生真菌感染促进了土壤氮(N)的积累,提高了30天培养时间内土壤初始碳(C)矿化速率和前3天土壤矿化量和土壤矿化总量;而在处理时间较短且没有地上枯落物分解的盆栽羊草中,内生真菌感染对土壤的C、N含量及C矿化均无显著影响。无论是野外样地还是室内盆栽实验,内生真菌感染均未引起土壤微生物磷脂脂肪酸种类的变化,但内生真菌感染均有提高土壤微生物生物量的趋势,内生真菌显著增加了盆栽羊草土壤中细菌、革兰氏阴性细菌、真菌磷脂脂肪酸含量和磷脂脂肪酸总量,增加了羊草样地土壤中革兰氏阳性细菌和放线菌的磷脂脂肪酸含量。总体看来,内生真菌感染能够改变土壤N积累和C矿化率,并且改变土壤中微生物群落的结构,这有助于进一步认识内生真菌与羊草之间的共生关系及其在生态系统C、N循环中所起的作用。 Aims Leymus chinensis is a dominant grass native to the mid-eastern Inner Mongolia Steppe. The plants of this species are sometimes heavily infected with fungal endophytes that produce alkaloids, which in turn affect insect herbivory, plant production, and litter decomposition. Our objective was to investigate the effects of the L. chinensis-endophyte association on soil properties and soil microbial communities in field and pot xperiments. Methods We concurrently conducted a field and a pot experiment. The soil total carbon (C) and nitrogen (N) were analyzed with an Elemental Analyzer, and C mineralization was determined by using a soil incubation test over a 30-day period. Soil microbial biomass and community composition were assayed by using phospholipid fatty acid (PLFA) technique. Important findings In the field experiment, where L. chinensis plants had grown for longer time and there was litter decomposition, fungal endophyte infection significantly increased soil N content, the initial C mineralization rate, the C mineralization during the first three days, and the accumulative C mineralization during the 30-day soil incubation. In the pot experiment, where L. chinensis plants had grown for shorter time and there was no litter decomposition, the soil total C and N contents and the C mineralization did not differ between the endophyte-infected (E+) and endophyte-free (E–) treatments. We found no significant difference in the types of PLFAs between the E+ and the E– treatments in both field and pot experiment, but endophyte infection tended to increase the soil microbial biomass. The PLFA contents of bacteria, gram-negative bacteria (G–), fungi, and total PLFA were significantly higher in the E+ treatment than in the E– treatment in the pot experiment; whereas in the field experiment, the PLFA contents of gram-positive bacteria (G+) and actinomycetes were significantly higher in the E+ treatment than in the E– treatment. This study suggests that endophyte infection may change the soil N accumulation and the rate of C mineralization, and alter soil microbial community structure. Our findings can help with understanding the relationship between fungal endophytes and L. chinensis and its role in ecosystem C and N cycling.
出处 《植物生态学报》 CAS CSCD 北大核心 2014年第1期54-61,共8页 Chinese Journal of Plant Ecology
基金 国家自然科学基金(31270463) 教育部高等学校博士学科点专项科研基金(2013003111-0023) 国家基础学科人才培养基金(J1103503)
关键词 碳矿化 内生真菌 羊草 磷脂脂肪酸 土壤微生物群落 C mineralization, fungal endophyte, Leymus chinensis, phospholipid fatty acid, soil microbial community
  • 相关文献

参考文献33

  • 1Arnold AE,Maynard Z,Gilbert GS,Coley PD,Kursar TA. Are tropical fungal endophytes hyperdiverse[J].Ecology Letters,2000.267-274.
  • 2Baumann K,Dignac MF,Rumpel C,Bardoux G Sarr A Steffens M Maron PA. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil[J].Biogeochemistry,2013.201-212.
  • 3Belesky DP,Fedders JM. Tall rescue development in response to Acremonium coenophialum and soil acidity[J].Crop Science,1995.529-533.
  • 4Bultman TL,Bell GD. Interaction between fungal endophytes and environmental stressors influences plant resistance to insects[J].Oikos,2003.182-190.
  • 5Bums JC,Fisher DS. Intake and digestion of'Jesup' tall fescue hays with a novel fungal endophyte,without an endophyte,or with a wild-type endophyte[J].Crop Science,2006.216-223.
  • 6Casas C,Omacini M,Montecchia MS,Correa OS. Soil microbial community responses to the fungal endophyte nentyphodium in Italian ryegrass[J].Plant and Soil,2011.347-355.
  • 7陈孝泉,李艳芹,贾丰生,陈吉琳.羊草植物的研究[J].草业科学,1989,6(2):7-12. 被引量:16
  • 8Christensen MJ. Antifungal activity in grasses infected with Acremonium and Epichloě endophytes[J].Australasian Plant Pathology,1996.186-191.
  • 9Clay K. Fungal endophytes of grasses[J].Annual Review of Ecology and Systematics,1990.275-297.
  • 10Clay K,Holah J. Fungal endophyte symbiosis and plant diversity in successional fields[J].Science,1999.1742-1744.

二级参考文献27

  • 1张雷,严红,魏湜.土壤有机碳储量及影响其分解因素[J].东北农业大学学报,2004,35(6):744-748. 被引量:7
  • 2张丽华,宋长春,王德宣.沼泽湿地CO_2、CH_4、N_2O排放对氮输入的响应[J].环境科学学报,2005,25(8):1112-1118. 被引量:34
  • 3陈春梅,谢祖彬,朱建国.土壤有机碳激发效应研究进展[J].土壤,2006,38(4):359-365. 被引量:52
  • 4黄文昭,赵秀兰,朱建国,谢祖彬,朱春梧.土壤碳库激发效应研究[J].土壤通报,2007,38(1):149-154. 被引量:39
  • 5Charles A C, Robert P B, Denice H W. Assessing the relationship between hiomass and soil organic matter in created wetlands of central Pennsylvania, USA [ J ]. Ecological Engineering, 2001, 38:423-428.
  • 6Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming [ J]. Ecological Applications, 1991, 1(1): 182-195.
  • 7Maltby E, Immirzi P. Carbon dynamics in peaflands and other wetland soils: regional and global perspectives [ J ]. Chemosphere, 1993, 27 : 999 - 1023.
  • 8Roulet N T. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada [ J ]. Wetlands, 2000, 20(4) : 605 -615.
  • 9Weintraub M N, Schimel J P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic Tundra soils [J]. Ecosystems, 2003, 6(2) : 129 - 143.
  • 10Yakovchenko V P, Sikora L J , Millner PD. Carbon and nitrogen mineralization of added particulate and maeroorganie matter [ J ]. Soil Biology and Biochemistry, 1998, 30(14) : 2139 -2146.

共引文献51

同被引文献142

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部