期刊文献+

吡咯类离子液体电解质性质对锂空气电池放电性能的影响 被引量:1

Pyrrolidinium-based Ionic Liquids as Electrolytes and Discharge Performance for Lithium Air Cell
下载PDF
导出
摘要 利用循环伏安法、电池充放电装置等电化学手段,测试了所选离子液体N-甲基-N-丙基吡咯双三氟甲基磺酸基酰亚胺(PYR13TFSI)、N-甲基-N-丁基吡咯双三氟甲基磺酸基酰亚胺(PYR14TFSI)和N-甲基-N-甲氧乙基吡咯双三氟甲基磺酸基酰亚胺(PYR1(201)TFSI)的饱和氧溶解度、溶液电导率及氧电化学行为随锂盐浓度的变化。结果显示:室温离子液体的溶液电导率和氧扩散系数与锂盐质量摩尔浓度呈负相关,氧气溶解度随着锂盐质量摩尔浓度的增加呈现先降后升的"火山形"趋势;在0.6mol/kg LiTFSI条件下,PYR1(201)TFSI离子液体的氧电还原反应活性较高,而PYR14TFSI离子液体的相对较低;PYR14TFSI,PYR1(201)TFSI和PYR13TFSI离子液体组成的锂空气电池的放电电容分别是1 068,1 084,1 249mAh/g,PYR13TFSI离子液体的放电电压最高,明显高于有机电解液(EC、DMC、EMC体积比为1∶1∶1)锂空气电池的放电电容及电压。 The ionic liquids were characterized by cyclic voltammetry and cell discharge/charge test and other measurements in order to study the saturated oxygen solubility, electrolyte conductivity and oxygen electro chemical properties with varying Li-salt concentration for N-butyl-N- methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR14 TFSI), N-methoxyethyl-N- methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR1(201) TFSI) and N-propyl-N- methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR13TFSI). The results show that the electrolyte conductivity and oxygen diffusion coefficient in RTILs electrolytes were inversely proportional to Li-salt concentration. The saturated oxygen solubility dectreased and then increased with the increase of Li-salt concentration in RTILs. The activity of oxygen reduction was best in PYR1(201) TFSI and worst in PYR14TFSI in the presence of 0.6 mol/kg LiTFSI. The discharge capacity for lithium air cell with PYR14 TFSI, PYR1(201) TFSI and PYR13 TFSI in the presence of 0.6 mol/kg LiTFSI was 1 068, 1 084,1 249 mAh/g, respectively. Lithium air cell with 0.6 mol/kg LiTFSI-PYR13TFSI had the highest discharge plateau and obviously higher than the lithium air cell with organic electrolyte (VEC: VDMC : VEMC=1: 1 : 1).
出处 《太原理工大学学报》 CAS 北大核心 2014年第1期85-91,共7页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(20676088) 教育部博士点基金项目(20091402110009)
关键词 离子液体 电导率 氧气溶解度 氧扩散系数 锂空气电池 ionic liquid electrolyte conductivity oxygen solubility oxygen diffusion coeffi cient lithium air cell
  • 相关文献

参考文献1

二级参考文献14

  • 1夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2)[J].电池,2005,35(1):27-30. 被引量:36
  • 2夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(3)[J].电池,2005,35(2):105-108. 被引量:14
  • 3郭学益,刘海涵,李栋,田庆华,徐刚.二氧化锰晶型转变研究[J].矿冶工程,2007,27(1):50-53. 被引量:15
  • 4Bruce P G. Energy storage beyond the horizon:Rechargeable lithium batteries[J]. Solid State Ionics, 2008, 179(21-26) :752- 760.
  • 5Machefaux E, Verbaere A, Guyomard D. Synthesis and characterization of new nanostructured manganese oxides for lithium batteries[J]. Ionics, 2005, 11(1-2):24-28.
  • 6Li Y P, Zhou X Q, Zhou H J, et al. Hydrothermal preparation of nanostructured MnO2 and morphological and crystalline evolution[J]. Yuan A B, 28(7): 1223-1226.
  • 7Zhou M, Wang X L, et al. Synthesis and characterization of nanostructured manganese dioxide used as positive electrode material for electrochemical capacitor with lithium hydroxide electrolyte[J]. Chinese Journal of Chemistry,2008, 26 (1):65-69.
  • 8Wang X Y, Wang X Y, Huang W G, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources, 2005, 140(1):210-215.
  • 9Sugantha M, Ramakrishnan P A, Hermarm A M, et al. Nanostructured MnO2 for Li batteries[J]. International Journal of Hydrogen Energy, 2003, 28(6):597-600.
  • 10Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries[J]. Journal of Power Sources, 2010, 195(5) : 1370-1374.

共引文献18

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部