期刊文献+

底部排气弹三维湍流燃烧的数值模拟 被引量:9

Numerical simulation of three-dimensional turbulent combustion of the base bleed projectile
下载PDF
导出
摘要 为了研究底部排气减阻机理,发展了一套多块结构网格三维湍流流动与燃烧的计算软件(MSTCS-3D)。计算软件采用3阶MUSCL重构方法并耦合Steger-warming通量分裂技术,求解雷诺时均Navier-Stokes方程,湍流流动模型采用k-ωSST模型,化学反应动力学模型采用CO-H2-O2反应系统8组分12步基元反应模型,湍流燃烧模型采用二阶矩模型。采用该计算软件,分析了底部排热空气/真实气体、来流马赫数对底部排气弹底部流场结构的影响以及对减阻特性的影响。计算结果表明,底排真实气体和底排热空气数值模拟结果差别较大;底部二次燃烧主要发生在弹底的二次回流区;来流马赫数越大,初始回流区后退距离更大,同时减阻效果也越好;编制的计算软件具有较高可靠性,可作为深入分析底部排气减阻机理的工具。 A multi-block structured grid 3D turbulent flow and combustion calculation software(MSTCS-3D) were developed in order to study the drag reduction mechanism.The Navier-Stokes equations were solved by the MUSCL reconstruction method coupled with steger-warming flux splitting technique in the calculation software by using the k-to SST turbulent flow model, CO-H2-O2 reac- tion system chemical kinetic model and a second-order moment turbulent combustion model.The structure of the bottom flow field and the drag reduction characteristics were analyzed by means of the MSTCS-2D/3D.The results show that the numerical simulation results of the hot air and real gas are different; with the increase of Mach number, the initial recirculation zone will retreat a greater distance and the drag reduction effect will be better;the secondary combustion mainly occur in the second recirculation zone;calcu- lation software has high reliability,which can be used as a tool for analysis of drag reduction mechanism.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2013年第6期720-726,共7页 Journal of Solid Rocket Technology
基金 国家部委十二五预研项目(404040302) 江苏省普通高校研究生科研创新计划项目(CXLX13_202)
关键词 底部排气弹 二次燃烧 计算流体力学 湍流燃烧 底部压力比 base bleed projectile secondary combustion computational fluid dynamics turbulent combustion bottom pressure
  • 相关文献

参考文献10

  • 1郭锡福.底部排气弹外弹道学[M].北京:国防工业出版社.1994.
  • 2Charles J Nietubica. Navier-stokes computations for a reac- ting, M864 base bleed projectile[ R ] .AIAA 93-0504.
  • 3Petri Kaurinkoski. Computation of the flow of thermally per- fect gas past a supersonic projectile with base bleed [ R]. AIAA 96-3451.
  • 4Jeong-Yeol Chor. Numerical study of base bleed projectile with external combustion[ R] .AIAA 2005-4352.
  • 5Menter F R.Two equation eddy viscosity turbulence models for engineering application [ J ]. AIAA Journal, 1994, 32 : 1598-1605.
  • 6Steger J L,Warming R F.Flux vector splitting of the inviscid gas-dynamics with application to finite difference methods [ J] .Journal of Computational Physics, 1981,40(2).
  • 7胡湘渝,张德良,姜宗林.气相爆轰基元反应模型数值模拟[J].空气动力学学报,2003,21(1):59-66. 被引量:10
  • 8Lehr H F. Experiments on shock-induced combustion [ J ]. Aerona-utica Acta, 1972,17:74-80.
  • 9Yungster S,EB Erhardt S.Numerical simulation of hypervel- ocityp-rojectiles in detonable gases [ J ]. AIAA Journal, 1991,29(2) :215-223.
  • 10Mathur T,Dutton J C.Base bleed experiments with a cylin- drical afterbody in supersonic flow[ R] .AIAA 95-0063.

二级参考文献20

  • 1[1]HARTEN R J. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49:231-303.
  • 2[2]GODUNOV S K. Finite difference method for numerical computational of discontinuous solutions of the equation of fluid dynamics[J]. Matematicheskii Sbornik, 1959, 47:271-306.
  • 3[3]VAN LEER B. Toward the ultimate conservative difference scheme: a second-order scheme to Godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
  • 4[4]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes I[J]. Journal of Computational Physics, 1988, 77:439-471.
  • 5[5]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II[J]. Journal of Computational Physics, 1989, 83:32-78.
  • 6[6]SCHOFFEL S U, Ebert F. Numerical analysis concerning the spatial dynamics of an initially plane gaseous ZND detonation[J]. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1988,114:3-31.
  • 7[7]GAKI S, FUJIWARA T. Numerical analysis of two-dimensional nonsteady detonations[J]. AIAA Journal ,1978, 16:73-77.
  • 8[8]LEFEBVRE M H. Simulation of cellular structure in a detonation wave. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1991,153:64-77.
  • 9[9]STULL D R. JANAF thermochemical tables, National standard reference data series[M]. U. S. National, Breau of Standards No. 37. 2nd Ed. Gaithersberg Press, Maryland, 1971.
  • 10[10]ANDERSON J D, ORAN E S. Hypersonic and high temperature gas dynamics[J]. McGraw-Hill, New York. 1989.

共引文献12

同被引文献77

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部