期刊文献+

任意多面体的快速非结构网格生成算法 被引量:2

Fast unstructured mesh generation based on arbitrary polyhedron
下载PDF
导出
摘要 对于包含复杂气动外形的CFD数值模拟,网格生成是其中的关键,快速稳定的网格生成技术是其中的重要组成部分。建立了基于可视面的适用于任意多面体的快速初始化算法;改进了Delaunay生成算法后使用Delaunay改进生成算法细化网格,讨论了网格质量判定依据对网格生成的影响,通过开发Delaunay面交换技术优化网格生成过程;建立了基于顶点弹簧理论的网格优化方法,以提高网格生成的质量。结果表明,本文建立的算法效率较高。 Mesh generation is the key to the numerical simulation in CFD with complex aerodynamic shapes. The algorithm of mesh generation is required to be fast and robust. First, this framework established efficient initial tetrahedron arithmetic based on viewed-able face which is fit to the arbitrary polyhedron. Then, Delaunay generation method was improved to refine meshes and the effect of different mesh quality criterion was discussed and the divergence with Delaunay face swapping was developed to optimize the mesh generation process, Finally, a vertex spring model for mesh optimization was established. The results indicate that the method established in the research is efficient and stable.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第6期20-24,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金项目(91016010 91216117)
关键词 任意多面体 非结构网格 阵面推进 DELAUNAY 网格细化 arbitrary polyhedron unstructured mesh advancing-front Delaunay grid refine
  • 相关文献

参考文献7

  • 1张涵信;沈孟育.计算流体力学-差分方法的原理与应用[M]{H}北京:国防工业出版社,2003.
  • 2周培德.计算几何[M]{H}北京:清华大学出版社,2004.
  • 3Lawson C L. Software for C1 surface interpolation[A].{H}New York:Academic Press,1977.161-194.
  • 4Rivara M C. New longest-edge algorithms for triangular mesh generation[J].Computational Geometry:Theory and Application,2002.86-95.
  • 5Bowyer A. Computing dirichlet tessellations[J].{H}The Computer Journal,1981,(2):151-166.
  • 6Thompson J F,Weathrill N P. An aspects of numerical grid generation:current science and art.AIAA 93-3539[R].1993.
  • 7陈欣,熊岳山.复杂平面区域的三角网格生成算法[J].国防科技大学学报,2008,30(4):94-97. 被引量:4

二级参考文献9

  • 1Owen S J. A Survey of Unstructured Mesh Generation Technology [ C]//Proc. 7^th International Meshing Roundtable, Michigan, 1998: 239.
  • 2Lawson C L. Software for C1 Surface Interpolation [C]//Mathermatical Software Ⅲ, J. Rice (ed.), Academic Press, New York, 1977 : 161 - 1941
  • 3Vigo M, Pla N. Computing Directional Constrained Delaunay Triangulations [J]. Computers & Graphics, 2000, 24:181 - 190.
  • 4Baker T J. Triangulations, Mesh Generation and Point Placement Strategies [ C ]//Proc. Computing the Future, 1995:61 - 75.
  • 5Shewchuk J R. What Is a Good Linear Element? Interpolation, Conditioning, and Quality Measures [ C]//Proc. 11^th International Meshing Roundtable, New York, 2002: 115- 126.
  • 6Shewchuk J R. Delaunay Refinement Algorithms for Triangular Mesh Generation [J]. Computational Geometry: Theory and Application, 2002, 22: 86 - 95.
  • 7Rivara M C. New Longest-edge Algorithms for the Refinement and/or Improvement of Unstructured Triangulations [ J ]. International Journal for Numerical Methods in Engineering,1997,40:3313-24.
  • 8Lo S H. 3D Mesh Refinement in Compliance with a Specified Node Spacing Function [J]. Computational Mechanics, 1998, 21:11 - 19.
  • 9关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14. 被引量:169

共引文献3

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部