期刊文献+

基于主成分分析和支持向量机相结合的天然气消费量预测 被引量:9

Consumption Prediction of Natural Gas Based on Principal Component Analysis and Support Vector Machine
下载PDF
导出
摘要 为了提高了天然气消费量的预测精度,提出一种主成分分析和支持向量机相结合的天然气消费量预测模型(PCA-SVM)。首先采用主成分分析选择影响天然气消费量的影响因素,然后输入到非线性预测能力强的支持向量机进行训练,并采用遗传算法优化支持向量机参数,最后建立天然气消费量预测模型。仿真实验结果表明,PCA-SVM加快了天然气预测型的学习速度,提高了天然气消费量的预测精度。 In order to improve the accuracy of the prediction of natural gas consumption, a model is presented to forecast natural gas consumption and support vector machine combined with a principal component analysis (PCA-SVM). The first principal component analysis was used to select factors that influence the consumption of natural gas, and then input to a nonlinear prediction ability of training support vector machine, genetic algorithm is used to optimize the parameters of SVM, the last natural gas consumption prediction model. The simulation results show that, PCA-SVM accelerate the learning speed prediction of natural gas, to improve the accuracy of the prediction of natural gas consumption.
作者 江敏
出处 《科技通报》 北大核心 2013年第12期42-44,47,共4页 Bulletin of Science and Technology
关键词 天然气消费量 主成分分析 支持向量机 预测模型 natural gas consumption principal component analysis support vector machine prediction model
  • 相关文献

参考文献5

二级参考文献20

  • 1张蔚东,方淯瑜,李恩山.居民燃气消耗量的随机分析[J].煤气与热力,1989,9(1):34-39. 被引量:10
  • 2蔡玉琢.城市煤气供应高峰系数[J].煤气与热力,1983,(6):20-23.
  • 3陈宝林.最优化方法[M].北京:清华大学出版社,1989..
  • 46,邓聚龙.灰色预测与决策.武汉:华中理工大学出版社,1988
  • 5[4]牛东晓.电力负荷预测技术及其应用.北京:中国电力出版社,1999
  • 6杜元顺.煤气时负荷系数的短期预测[J].煤气与热力,1981,(5):46-51.
  • 7杜元顺.煤气日负荷预测用的回归分析方法[J].煤气与热力,1982,(4):26-28.
  • 8Clark J. CERA: Natural gas poised to overtake oil use by 2025[J]. Oil & Gas Journal,2004,102(9) :20-21.
  • 9Berger G. World offshore oil, gas production has risen steadily[J]. Oil & Gas Journal, 2004,102(14) : 30-32.
  • 10Soerier K J. BCC: World gas demand to reach 116.9 tcf in 2008[J]. Oil & Gas Journal,2004,102(14) :33.

共引文献40

同被引文献105

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部