摘要
提出一种基于模拟退火粒子群的数据库查询优化算法。首先给了查询优化的代价模型,将数据库查询优化转化成一个多约束条件的组合化问题,然后采用粒子群算法对其进行求解,同时采用模拟退火算法对粒子群优化算法的性能进行改善,最后获得最优的数据库查询方案。仿真结果表明,相对于其它算法,当关系数较大,模拟退火粒子群算法的优势十分明显,提高了数据库查询效率,获得具有较好的查询优化性能。
The paper proposes a query optimizationalgorithm based on simulated annealing algorithm and particle swarm optimization algorithm. Firstly, the query optimization cost model is built and the database query is transformed into constraint conditionsoptimization problem, then the particle swarm algorithm is used to solvethe problem, at the same time the simulated annealing algorithm is used to improve the performance of the particleswarm optimization algorithm, and finally the optimal database query scheme is obtained. The simulation results show that the proposed algorithm has improved the query efficiency compared with the other algorithm when the relation is much, and overcome the defects of single simulated annealing algorithm and particle swarm optimization algorithm, and can obtain a better performance of query optimization.
出处
《科技通报》
北大核心
2013年第12期61-63,66,共4页
Bulletin of Science and Technology
基金
国家教师基金"十二五"规划重点课题(CTF120510)
关键词
数据库查询
粒子群算法
模拟退火算法
优化
databasequery
particle swarm optimization algorithm
simulated annealing
algorithm
optimization