期刊文献+

纹理提取分析的合成孔径细微图像的分类软件设计

Texture Extraction Analysis of Synthetic Aperture Subtle Image Classification Software Design
下载PDF
导出
摘要 合成孔径图像分类,在军事和民事上具有重要意义。提出一种基于纹理特征提取与降维的合成孔径细微图像的分类算法。特征集包括图像的纹理特征。采用二维离散小波变换对其进行分析处理。最后,选择人工神经网络作为默认分类器。实验部分选择WML算法与HA算法作为对比算法,对不同的实测数据进行分类,本文提出的算法为94.94%精确度,高于WML的91.32%与HA的88.43%精确度。因此,本文算法优于WML与HA算法。 Is proposed based on the texture feature extraction and dimension reduction of synthetic aperture subtle image classification algorithm. Feature set including image texture feature. The two-dimensional discrete wavelet transform to carry on the analysis. Finally, the choice of artificial neural network classifier as the default. The part of the selection WML algorithm and HA algorithm for comparison algorithm for different measured data classification, this paper proposes the algorithm is 94.94% accuracy, higher than 91.32% of the WML with 88.43% accuracy HA. Therefore, this article algorithm is better than the WML and HA algorithm.
作者 胥颖
出处 《科技通报》 北大核心 2013年第12期100-102,共3页 Bulletin of Science and Technology
关键词 合成孔径雷达 纹理分析 图像分类 synthetic aperture radar texture analysis image classification
  • 相关文献

参考文献5

  • 1Gnanadurai d,sadasivam v,paul tiburtius nishandh J. Undecimated double density wavelet transform based speckle reduction in SAR images[J].Computers & Elec-trical Engineering,2009,(1):209-217.
  • 2陈尔学,李增元,田昕,李世明.尺度不变特征变换法在SAR影像匹配中的应用[J].自动化学报,2008,34(8):861-868. 被引量:24
  • 3WU L N,WEI G. A new classifier for polarimetric SAR images[J].Progress in Electromagnetics Research,2009.83-104.
  • 4KanevskyM B. Synthetic aperture radar. Radar Imag-ing of the Ocean Waves[M].Amsterdam; Elsevier,2009.99-157.
  • 5Vilardo g,ventura g,terranova C. Ground deforma-tion due to tectonic,hydrothermal,gravity,hydrogeologi-cal,and anthropic processes in the Campania Region(Southern Italy)from Permanent Scatterers Synthetic Aperture Radar Interferometry[J].Remote Sensing of En-vironment,2009,(1):197-212.

二级参考文献11

  • 1安如,王慧麟,徐大新,冯学智,周绍光,何凯.基于影像尺度空间表达与鲁棒Hausdorff距离的快速角点特征匹配方法[J].测绘学报,2005,34(2):101-107. 被引量:3
  • 2Brown M, Lowe D G. Recognizing panoramas. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE, 2003. 1218-1225
  • 3Schmid C, Mohr R. Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5): 530-535
  • 4Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the International Conference on Computer Vision. Kerkyra, Greece: 1999. 1150-1157
  • 5Baumberg A. Reliable feature matching across widely separated views. In: Proceedings of International Conference on Computer Vision and Pattern Recognition. Hitton Head Island, USA: IEEE, 2000. 774-781
  • 6Brown M, Lowe D G. Invariant features from interest point groups. In: Proceedings of the 13th British Machine Vision Conference. Cardiff, Wales: 2002. 656-665
  • 7Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 506-513
  • 8Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630
  • 9Roth G, Scott W R. An image search system for UAVs. In: Proceedings of UVS Canada's Advanced Innovation and Partnership 2005 Conference. Banff, Alberta, Canada: NRC, 2005. 1-11
  • 10Ke Y, Sukthankar R, Huston L. Effcient near-duplicate detection and subimage retrieval. In: Proceedings of the 12th ACM International Conference on Multimedia. New York, USA: ACM, 2004. 869-876

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部