期刊文献+

诱发H形桥梁断面风振的空气能量输入特征 被引量:1

AIR-INPUT-ENERGY CHARACTERISTICS OF H-SHAPE BRIDGE DECKS INDUCED BY WIND VIBRATION
原文传递
导出
摘要 采用计算流体动力学(CFD)的方法,分析了H形断面颤振临界状态下的绕流特征。采用分块分析方法研究颤振过程中气流能量在模型表面不同区域的输入特性以及模型表面的旋涡演化过程对模型表面气动力和气动能量输入特性的影响。分析结果表明模型表面的旋涡演化造成了靠近迎风侧挡板的模型区域的表面压力变化具有较强的规律性,而背风侧挡板附近的模型区域的表面压力变化则没有明显的规律。分块分析的结果显示模型靠近迎风侧挡板的上表面区域是吸收气流能量的部位,而气流输入到模型背风侧挡板附近区域的能量具有波动特性,使得空气输入到模型的总气动能量在一个完整的振动周期内也具有较强的波动特征,从而造成H形断面颤振发生时出现持时较长的大幅扭转振动。 The flow characteristics around an H-shape bridge deck in its flutter was studied by the computational fluid dynamics (CFD) numerical method. The effect of the vortex evolution on the model different region's aerodynamic force and pneumatic energy was researched by block analysis. The research shows that the vortex evolution caused by the changeable characteristics of the surface pressure on the model area near the windward side platen had strong regularity. While the change of pressure on the model region near the leeward side baffle had no obvious rule. Block analysis show that the model up side surface areas near the windward side platen absorbed the air energy, and the air energy input to the model surface near the leeward side platen was fluctuate. Thusly, the total air energy input to the model was also fluctuate, which caused a long time larger amplitude of torsional vibration of H-shape bridge decks in the flutter.
出处 《工程力学》 EI CSCD 北大核心 2014年第1期173-180,187,共9页 Engineering Mechanics
基金 国家自然科学基金项目(51208197 5102114005) 华北水利水电大学高层次人才资助项目(201315)
关键词 H形断面 分块分析 能量特性 气动力 旋涡演化规律 H-shape bridge decks block analysis the characteristics of energy aerodynamic force the law of vortex evolution
  • 相关文献

参考文献11

  • 1Scanlan R H. The action of flexible bridges under wind, I: Flutter theory [J]. Journal of Sound and Vibration, 1978, 60(2): 187- 199.
  • 2Larsen A. Aerodynamics of the Tacoma narrows bridgc- 60 years later [J]. Journal of Structure and Engineering International, 2000, 10(4): 243-248.
  • 3董国朝,陈政清,罗建辉,李寿英.安装亮化灯具导致的斜拉桥拉索风致驰振流固耦合分析[J].中国公路学报,2012,25(1):67-75. 被引量:10
  • 4刘高,王秀伟,强士中,周述华.大跨度悬索桥颤振分析的能量方法[J].中国公路学报,2000,13(3):20-24. 被引量:8
  • 5Frazer R A. On the power input required to maintain forced oscillations of an aeroplane wing in flight JR]. A.R.C Technical Report, 1939, 1819: 1- 18.
  • 6Nissim E. Flutter suppression using activecontrols based on the concept of aerodynamic energy JR]. NASA Technical Note. America, Washington: National Aeronautics and Space Administration, 1971: 18- 28.
  • 7Jones J G. On the energy characteristics of the aerodynamic matrix and the relationship to possible flutter [J]. The Aeronautical Quarterly, 1983, 18: 212- 225.
  • 8Carta F O. Coupled blade-disk-shroud Flutter instabilities in turbojet engine rotors [J]. Journal of Engineering for Power, 1967, 89(3): 419-426.
  • 9Lubcke H, Schmidt S, Rung T, Thiele F. Comparison of LES and RANS in bluff-body flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1471- 1485.
  • 10Vairo G. A numerical model for wind loads simulation on long-span bridges [J]. Simulation Modelling Practice and Theory, 2003, 11(5/6): 315-351.

二级参考文献25

  • 1钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:513
  • 2邓见,任安禄,邹建锋.方柱绕流横向驰振及涡致振动数值模拟[J].浙江大学学报(工学版),2005,39(4):595-599. 被引量:18
  • 3MATSUMOTO M,YAGI T,SHIGEMURA Y,et al. Vortex-induced Cable Vibration of Cable-stayed Bridges at High Reduced Wind Velocity [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89(7/8) :633-647.
  • 4TAGATA G. Harmonically Forced, Finite Amplitude Vibration of a String[J]. Journal of Sound and Vibra- tion, 1977,51 (4) : 483-492.
  • 5HIKAMI Y, SHIRAISHI N. Rain wind Induced Vibrations of Cables Stayed Bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988,29(1/2/3) :409-418.
  • 6GU Ming,DU Xiao-qin. Experimental Investigation of Rain-wind-induced Vibration of Cables in Cable- stayed Bridges and Its Mitigation [J].Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93 (1):79 95.
  • 7SIMIU E, SCANLAN R H. Wind Effects on Structures: Fundamentals and Applications to Design[M]. New York:John Wiley & Sons,1996.
  • 8MENTER F R. Improved Two-equation k-w Turbu- lence Models for Aerodynamic Flows [R]. Moffett Field : Ames Research Center, 1992.
  • 9MENTER F R. Two-equation Eeddy-viscosity Turbulence Models for Engineering Applications[J].AIAA Journal, 1994,32 (8) : 1598-1605.
  • 10WILCOX D C. Muhiscale Model for Turbulent Flows [J]. AIAA Journal,1988,26(11) :1311 1320.

共引文献16

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部