摘要
本文研究在污染环境下带有时滞和脉冲输入的双营养基和一种微生物的恒化器模型.利用脉冲微分方程比较定理,我们得到微生物灭绝周期解的全局吸引和系统持久的充分条件.
In this paper, we study a two-nutrient and one-microorganism delayed chemostat model with periodically pulsed input and polluted environment. Through the comparison theorem of pulse equation,we show that there exists a microorganism-free periodic solution,which is globally attractive. At the same time,we give the sufficient condition for the permanence of the model.
出处
《应用数学》
CSCD
北大核心
2014年第1期34-43,共10页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of Shanxi Province(2013011002-2)
关键词
恒化器
周期解
时滞
全局吸引
持久性
Chernostat
Periodic solution
Delayed
Persistence
Globally attractive