摘要
通过引入最小改变的对角修正策略,结合弱二阶拟牛顿方程,设计一种新的求解无约束优化问题的对角二阶拟柯西法,此算法保证了修正矩阵的非奇异性.在适当的假设条件下,进一步分析算法的线性收敛性.数值试验结果表明,该算法是有效且可行的.
Based on the second-order quasi-Newton equation and least-change diagonal updating strategy,we propose a diagonal second-order Quasi-Cauchy method,which guarantees the non-singularity of the updating formula. In the appropriate assumptions, we prove the linear convergence of the algorithm to go a step further. Numerical results also show that the new algorithm is more stable and more effective.
出处
《应用数学》
CSCD
北大核心
2014年第1期199-205,共7页
Mathematica Applicata
基金
山西省自然科学基金(2008011013)
关键词
弱二阶拟牛顿方程
最小改变策略
对角二阶拟柯西法
线性收敛性
Weak second order Quasi-Newton equation
Least change strategy
Diagonal second-order Quasi-Cauehy method
Linearly convergence