期刊文献+

无约束优化问题的对角二阶拟柯西法

A Diagonal Second-order Quasi-Cauchy Method for Unconstrained Optimization Problem
下载PDF
导出
摘要 通过引入最小改变的对角修正策略,结合弱二阶拟牛顿方程,设计一种新的求解无约束优化问题的对角二阶拟柯西法,此算法保证了修正矩阵的非奇异性.在适当的假设条件下,进一步分析算法的线性收敛性.数值试验结果表明,该算法是有效且可行的. Based on the second-order quasi-Newton equation and least-change diagonal updating strategy,we propose a diagonal second-order Quasi-Cauchy method,which guarantees the non-singularity of the updating formula. In the appropriate assumptions, we prove the linear convergence of the algorithm to go a step further. Numerical results also show that the new algorithm is more stable and more effective.
出处 《应用数学》 CSCD 北大核心 2014年第1期199-205,共7页 Mathematica Applicata
基金 山西省自然科学基金(2008011013)
关键词 弱二阶拟牛顿方程 最小改变策略 对角二阶拟柯西法 线性收敛性 Weak second order Quasi-Newton equation Least change strategy Diagonal second-order Quasi-Cauehy method Linearly convergence
  • 相关文献

参考文献1

二级参考文献15

  • 1Barzilai J and Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8: 141-148.
  • 2Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method. IMA Jouvanl of Numerical Analysis, 1993, 13: 321-326.
  • 3Raydan M and Svaiter B F. Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Computational Optimization and Applications, 2002, 21: 155-167.
  • 4Yuhong Dai, Jinyun Yuan, and Ya-XiangYuan: Modified two-point stepsize gradient methods for unconstrained optimization. Computational Optimization and Applications, 2002, 22: 103-109.
  • 5Raydan M. The Barzilai and Borwein gradient method for large scale unconstrained minimization problems. SIAM J. Optim., 1997, 7(1): 26-33.
  • 6塞亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1997..
  • 7Dixon L W C. Conjugate directions without line searches. Journal of the Institute of Mthematics and Its Applications, 1973, 11: 317-328.
  • 8Grippo L, Lampariello F and Lucidi S. A class of nonmonotone stability methods in unconstrained optimization. Numevische Mathematik, 1991, 62: 779-805.
  • 9Schubert L K. Modification of a quasi-Newton method for nonlinear equations with sparse Jacobian. Math. of Comput., 1970, 24: 27-30.
  • 10Goldstein A A. Cauchy's method of minimization. Numerische Mathematik, 1962, 4: 146-150.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部