期刊文献+

基于二维SVM的风力发电功率初步预测网络模型 被引量:1

The Network Model for the First-step Test on the Wind Electricity Prediction Based on Single Binary SVM
下载PDF
导出
摘要 二维SVM分类器只能解决简单的分类问题,本文在此基础上构建网络模型,实现发电功率数值的初步预测。并且使得预测误差缩小至0.05,提高了预测的精度。 Single binary SVM classifier can only solve the simple categorization task. So we build a network model on this and give a first-step test on the wind electricity prediction. Finally, we let the error go down to 0.05 and increase the accuracy.
出处 《日用电器》 2013年第12期56-58,共3页 ELECTRICAL APPLIANCES
关键词 SVM 网络模型 发电功率 预测 SVM network model electricity power prediction
  • 相关文献

参考文献3

二级参考文献33

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 3杨淑媛,焦李成,王敏.一种自适应脊波网络模型[J].西安电子科技大学学报,2005,32(6):890-894. 被引量:9
  • 4CANDES E J. Ridgelets~ theory and applications [D]. Palo Alto, CA, USA: Stanford University, 1998.
  • 5CANDES E J, DONOHO D L. Ridgelets: a key to higherdimensional intermittency? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1999, 357: 2495-2509.
  • 6YANG S Y, WANG M, JIAO L C. A new adaptive ridgeletneural network [C]// Proceedings of the 2nd International Symposium on Neural Networks (ISSN '05), May 30-June 1, 2005, Chongqing, China. LNCS 3496. New York, NY, USA: Springer-Verlag, 2005: 385-391.
  • 7MIRANDA V, CERQUEIRE C, MONTEIRO C. Training a FIS with EPSO under an entropy criterion for wind power prediction[C]// Proceedings of the International Conference on Probabilistic Methods Applied to Power Systems, June 11-15, 2006, Stockholm, Sweden.
  • 8LEXIADIS M A, DOKOPOULO S P, SAMANOGLOU S H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 9BOSSANYI E A. Short-terra wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-8.
  • 10MOHAMED M A, REHMAN S, HALAWANI T O. A neural networks approach for wind speed prediction [J]. Renewable Energy, 1998, 13(3): 345-354.

共引文献222

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部