期刊文献+

聚氯乙烯接枝烯丙基聚乙二醇的制备及成膜性能 被引量:2

Membrane Property of PVC-g-APEG Grafting Modified Material
下载PDF
导出
摘要 以氯化亚铜(CuCl)/2,2'-联吡啶(BPy)为催化配位体系,N,N-二甲基乙酰胺(DMAc)作为溶剂,通过原子转移自由基聚合(ATRP)法在聚氯乙烯(PVC)分子链上接枝烯丙基聚乙二醇(APEG)。X射线光电子能谱(XPS)、红外光谱(FT-IR)和核磁共振(1H-NMR)表明:APEG单体成功地接枝到了PVC链上;改性材料经相分离法制备过滤膜,膜的孔径分布范围为0.117μm^0.247μm,接触角在300 s内由81°下降至64.4°;0.05 MPa跨膜压差下,初始纯水通量为1677 L/(m2·h);牛血清蛋白(BSA)液过滤试验共循环3次,0.05 MPa跨膜压差下,首次循环初始通量为737 L/(m2·h),经3次循环后BSA通量稳定在101 L/(m2·h),显示出较好的抗污染性能。 Allyl polyethylene glycols (APEG) was grafted onto poly ( vinyl chloride) (PVC) via atom transfer radical polymerization (ATRP) method. PVC was solved in N ,N-dimethylacetamide (DMAc) and cuprous chloride (CuCl)/2,2'-dipyridine (BPy) acted as the catalyst system in the reaction. The properties of the modified polymer were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FT-IR) and 1H-NMR spectroscopy. These results indicate that APEG was successfully grafted onto PVC. This modified polymer was used to form a filtration membrane by phase-separation method. The pore size range is 0. 117μm- 0.247 μm. Water contact angle of the membrane surface decreases from 81 to 64.4 in 300s. The initial pure water flux under 0.05 MPa transmembrane pressure is 1677 L/(m^2. h). The initial BSA solution flux under 0.05 MPa transmembrane pressure is 737 L/(m^2. h),it declines to steady 101 L/(m^2. h) at the end of the three cycles.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2014年第1期145-148,共4页 Polymer Materials Science & Engineering
基金 宁波市自然科学基金资助项目(2012A610170) 浙江省自然科学基金资助项目(LY12B06001)
关键词 聚氯乙烯 原子转移自由基聚合 改性 过滤 Keywords:poly(vinyl chloride) atom transfer radical polymerization membrane modification filtration
  • 相关文献

参考文献9

  • 1Mehmet Co?kun,P?nar Seven.Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization[J].Reactive and Functional Polymers.2011(4)
  • 2Dong Kyu Roh,Jung Tae Park,Sung Hoon Ahn,Hyungju Ahn,Du Yeol Ryu,Jong Hak Kim.Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: Interactions, nanostructures and applications to dye-sensitized solar cells[J].Electrochimica Acta.2010(17)
  • 3S.M. Hosseini,S.S. Madaeni,A.R. Khodabakhshi,A. Zendehnam.Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment[J].Journal of Membrane Science.2010(1)
  • 4Jung-Je Woo,Seok-Jun Seo,Sung-Hyun Yun,Rong-Qiang Fu,Tae-Hyun Yang,Seung-Hyeon Moon.Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with α-methylstyrene and acrylonitrile[J].Journal of Membrane Science.2010(1)
  • 5S. Moulay.Chemical modification of poly(vinyl chloride)—Still on the run[J].Progress in Polymer Science.2009(3)
  • 6Kenichi Hayashida,Hiromitsu Tanaka,Osamu Watanabe.Miscible blends of poly(butyl methacrylate) densely grafted on fumed silica with poly(vinyl chloride)[J].Polymer.2009(26)
  • 7Jingqian Zhou,Jizhong Ren,Li Lin,Maicun Deng.Morphology evolution of thickness-gradient membranes prepared by wet phase-inversion process[J].Separation and Purification Technology.2008(2)
  • 8Dae Sik Kim,Jong Seok Kang,Ki Yeon Kim,Young Moo Lee.Surface modification of a poly(vinyl chloride) membrane by UV irradiation for reduction in sludge adsorption[J].Desalination.2002(1)
  • 9Halina Kaczmarek,Renata Drag,Ma?gorzata ?wi?tek,Dagmara O?dak.The influence of UV-irradiation on poly(vinyl chloride) modified by poly(vinyl acetate)[J].Surface Science.2002

同被引文献21

  • 1Ttirgay O, Ers/z G, Atalay S, et al. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation [J].Separation and Purification Technology,2011, 79(1):26-33.
  • 2Verma A K, Dash R R, Bhtmia P. A review on chemical coagulation/ flocculation technologies for removal of colour from textile waste- waters[J] .Journal of Environmental Management,2012,93 ( 1 ): 154-168.
  • 3Jager D D, Sheldon M S, Edwards W. Colour removal from textile wastewater using a pilot-scale dual-stage MBR and subsequent RO system[J]. Separation and Purification Technology,2014,135:135-144.
  • 4Lofito A M, Sanctis M D, Bergna G, et al. Textile wastewater treatmat: Aerobic granular sludge vs activated sludge systems[J].Watea" Research, 2014,54:337-347.
  • 5Sathian S, Rajasimmam M, Rathnasabapathy C S, et al. Performance evaluation of SBR for the treatment of dyeing wastewater by simu- ltaneous biological and adsorption processes [J].Joumal of Water Process Engineering,2014,4:82-90.
  • 6Liang C Z, Sun S P, Li F Y, et al. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration[J].Joumal of Membrane Science,2014,469:306-315.
  • 7Lu X J, Liu L, Yang B, eta!. Reuse of printing and dyeing wastewater in process assessed by pilot-scale test using combined biological process and sub-filter technology[J].Joumal of Cleaner Production, 2009,17(2):111-114.
  • 8Wang Q Y, Wang Z W, Wu Z C. Effects of solvent compositions on physieochemical properties and anti- fouling ability of PVDF mierofiltration membranes for wastewater treatment[J~. Desalination, 2012 , 297:79 -86.
  • 9Fan X C, Su Y L, Zhao X T, etal. Fabrication of poly- vinyl chloride ultrafiltration membranes with stable anti- fouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal[J~. J Membr Sci, 2014 , 464:100-109.
  • 10Ran J, Wu L, Zhang Z H, et al. Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes[J~. Progr Polym Sci, 2014 , 39(1):124-144.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部