摘要
考虑惯性矩阵不确定和力矩扰动的影响,设计再入可重复使用飞行器的鲁棒自适应反步姿态控制器.首先,设计虚拟控制时,通过自适应实现对不确定项的未知边界的估计;其次,设计实际控制输入时,为消除反步法的"计算爆炸"问题,将虚拟控制导数作为不确定项,引入鲁棒项消除不确定与力矩扰动的影响;再次,基于Lyapunov理论证明了跟踪误差收敛到任意小邻域;最后,基于X-33的六自由度模型仿真验证了所设计的控制策略的有效性.
A robust adaptive back-stepping control strategy is proposed for attitude control design for reusable launch vehicles(RLV) in reentry phase in the presence of inertia matrix uncertainty and moment disturbances. Firstly, during the virtual control input design procedure, the adaptive law is used to estimate the unknown bound of the uncertainty. Secondly, during the actual control input design procedure, time derivative of the virtual control input is considered as the uncertain term to eliminate the "explosion of complexity" inherent in traditional back-stepping control. A robust term is applied to compensate the influence of uncertain term and moment disturbances. Then based on the Lyapunov analysis, tracking error converges to random neighborhood around zero. Finally, simulations on X-33 6-DOF show the effectiveness of the proposed controller.
出处
《控制与决策》
EI
CSCD
北大核心
2014年第1期12-18,共7页
Control and Decision
基金
国家自然科学基金项目(91016018
61273092
61203012)
教育部重大研究项目(311012)
天津市应用基础及前沿技术研究计划项目(11JCZDJC25100
12JCZDJC30300)
关键词
可重复使用飞行器
再入段
反步法
自适应
鲁棒
reusable launch vehicle
reentry phase
back-stepping control
adaptive control
robust