期刊文献+

一种自构建神经网络的内模控制方法 被引量:5

An Internal Model Control Method Based on Self-Constructing Neural Network
下载PDF
导出
摘要 针对非线性过程,提出了一种基于自构建神经网络的内模控制方法(Internal Model Control,IMC)。采用自构建算法实现神经网络的结构学习和参数学习,在被控过程内部模型和控制器模型的辨识过程中,该网络能够根据给定的判定条件自动增加神经元节点,以满足辨识精度的要求;为了防止网络学习过拟合,基于灵敏度方法对神经网络隐层节点进行修剪删除;网络的参数学习采用梯度下降法。自构建算法可以有效地避免普通神经网络内模控制方案中网络结构难以确定的问题,仿真结果表明,该控制系统有良好的跟踪性、鲁棒性和抗干扰性。 A novel algorithm on internal model control (IMC) based on self-constructing neural network (NN) is proposed for the non- linear process in this paper. The structure learning and parameters learning of the neural network were realized by self-constructing algo- rithm. In the identification process of the internal model and the controller, the neural network can automatically increase the nodes to meet the identification accuracy requirements. Moreover, in order to prevent the over-fitting of neural network learning, the hidden layer nodes can be pruned based on the sensitivity method. In addition, parameters learning adopt the gradient descending method. Compared with conventional NN-IMC method, this scheme can effectively avoid the problem of network structure is difficult to determine. The sim- ulation result shows that the control system has a good target tracking performance, disturbance rejection properties and robustness sim- ultaneously.
出处 《控制工程》 CSCD 北大核心 2014年第1期111-115,共5页 Control Engineering of China
基金 山西省自然科学基金资助项目(2012011027-4)
关键词 自构建 神经网络 灵敏度 内模控制 self-constructing neural network sensitivity internal model control
  • 相关文献

参考文献6

  • 1Cheng-Jian Lin.Nonlinear systems control using self-constructing wavelet networks[J].Applied Soft Computing Journal.2008(1)
  • 2Chi-Feng Wu,Cheng-Jian Lin,Chi-Yung Lee.A functional neural fuzzy network for classification applications[J].Expert Systems With Applications.2010(5)
  • 3Rodolfo E. Haber,J. R. Alique.Nonlinear internal model control using neural networks: an application for machining processes[J].Neural Computing and Applications.2004(1)
  • 4张伟,李大字.改进的一般化学习网络内模控制在CSTR中的应用[J].北京化工大学学报(自然科学版),2009,36(4):100-104. 被引量:6
  • 5Santiago Rementeria.Dynamic Schedule for Effective On-Line Connection Pruning[J].Neural Processing Letters.2001(1)
  • 6陈高华,张井岗,赵志诚.基于模糊神经网络的二自由度内模控制[J].电气自动化,2011,33(1):1-3. 被引量:5

二级参考文献17

  • 1沈永俊,顾幸生.PID神经网络内模控制在湿法烟气脱硫中的应用[J].清华大学学报(自然科学版),2007,47(z2):1798-1802. 被引量:6
  • 2陈奎生,易建钢,黄浩,刘光临.气动位置伺服系统的NN-IMC控制研究[J].中国机械工程,2004,15(23):2138-2142. 被引量:9
  • 3冯纯伯,刘延年.神经网络控制的现状及问题[J].控制理论与应用,1994,11(1):103-106. 被引量:17
  • 4赵超,张志君.混合遗传算法在CSTR中应用[J].大连理工大学学报,2006,46(3):438-441. 被引量:2
  • 5孙增圻 张再兴 邓志东.智能控制理论与应用[M].北京:清华大学出版社,1997..
  • 6Hirasawa K,Kim S,Hu J L,et al.Improvement of generalization ability for identifying dynamical systems by using universal learning networks[J].Neural Networks,2001,14(10):1389-1404.
  • 7Xiong Q Y,Hirasawa K,Hu J L,et al.A functions localized neural network with branch gates[J].Neural Networks,2003,16(10):1461-1481.
  • 8Aoyama A,Venkatasubramanian V.Internal model control framework using neural networks for the modeling and control of a bioreactor[J].Engineering Applications of Artificial Intelligence,1995,8(6):689-701.
  • 9Han M,Han B,Xi J H,et al.Universal learning network and its application for nonlinear system with long time delay[J].Computers & Chemical Engineering,2006,31(1):13-20.
  • 10DONG H K. Intelligent 2 - DOF PID control for thermal power plant using immune based multiobjective [ J ]. Neural Networks and Computational Intelligence ,2003:215 - 220.

共引文献8

同被引文献41

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部