期刊文献+

交互多模型扩展卡尔曼滤波算法的FPGA实现 被引量:3

Implementation of IMMEKF algorithm on FPGA
下载PDF
导出
摘要 对用于纯方位角度跟踪问题的交互多模型扩展卡尔曼滤波(IMMEKF)算法进行了研究,将其转换为适于硬件实现的形式。在此基础上,给出了基于现场可编程门阵列(FPGA)的实现方案,并讨论了硬件实现的资源优化和时间优化问题。软硬件仿真结果表明:IMMEKF硬件算法能够实现对单目标的纯方位角度跟踪,并且在保证与软件仿真具有相当精度的前提下能大幅减少运算时间。 Interactive multiple model extended Kalman filtering(IMMEKF) algorithm for bearings-only tracking is studied and transfer to the form suitable for hardware implementation. On this basis, an implementation scheme based on FPGA is proposed. Resource optimization and time optimization issues are discussed. Simulation results show that the hardware-based algorithm of" IMMEKF can realize bearings-only tracking on single target, and operating time is sharply reduced while guarantee the precision is comparative to software simulation.
出处 《传感器与微系统》 CSCD 北大核心 2014年第1期11-14,共4页 Transducer and Microsystem Technologies
关键词 目标跟踪 交互多模型扩展卡尔曼滤波 现场可编程门阵列 硬件实现 target tracking interactive multiple model extended Kalman filter (IMMEKF) FPGA hardware implementation
  • 相关文献

参考文献9

  • 1权太范.目标跟踪新理论与技术[M]{H}北京:国防工业出版社,2009.
  • 2洪少华,史治国,陈抗生.用于纯方位跟踪的简化粒子滤波算法及其硬件实现[J].电子与信息学报,2009,31(1):96-100. 被引量:11
  • 3Blom H,Bar-Shalom Y. The interacting muhiple model algorithm for systems with Markovian switching coefficients[J].{H}IEEE Transactions on Automatic Control,1988,(03):780-783.
  • 4Habtemariam B,Aravinthan A,Tharmarasa R. Distributed tracking with a PHD filter using effcient measurement encoding[J].Journal of Advances in Information Fusion,2012,(02):114-130.
  • 5Georgescu R,Willett P,Marano S. Predetection fusion in large sensor networks with unknown target locations[J].Journal of Advances in Information Fusion,2012,(01):61-77.
  • 6Yuan Ting,Bar-Shalom Y,Tian Xin. Heterogeneous track-totrack[J].Journal of Advances in Information Fusion,2011,(02):131-149.
  • 7Bolic M. Architectures for efficient implementation of particle filters[D].Stony Brook:Stony Brook University,2004.
  • 8Arulampalam M,Ristic B,Gordon N. Bearings-only tracking of maneuvering targets using particle filters[J].{H}EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING,2004,(15):2351-2365.
  • 9Dou Yong,Vassiliadis S,Kuzmanov G. 64-bit floating-point FPGA matrix multiplication[A].Monterey:ACM,2005.86-95.

二级参考文献10

  • 1Song T L and Speyer J L. A stochastic analysis of a modified gain extended Kalman filter with application to estimation with bearings-only measurements. IEEE Trans. on Automatic Control, 1985, AC-30(10): 940-949.
  • 2Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, London: Artech House, 2004, Chapter 5-12.
  • 3Doucet A, de Freitas N, and Gordon N (Eds.). Sequential Monte Carlo Methods in Practice. New York: Springer, 2001, Chapter 15-26.
  • 4Doucet A and Wang X D. Monte Carlo methods for signal processing: A review in the statistical signal processing context. IEEE Signal Processing Magazine, 2005, 22(6): 152-170.
  • 5Gordon N, Salmond D, and Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation, lEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
  • 6Zhai Y and Yeary M. A new particle filter tracking algorithm for DOA sensor system. Proc. of Instrumentation and Measurement Technology, Warsaw, 2007: 1-4.
  • 7Bolic M, Athalye A, and Djuric P M, et al. Algorithmic modification of particle filters for hardware implementation. Proc. of the European Signal Processing. Conference, Vienna,Austria, 2004: 1641-1646.
  • 8Bolic M, Djuric P M, and Hong S. Resampling algorithms for particle filters: A computational complexity perspective. EURASIP Journal of Applied Signal Processing: 2004, (15): 2267-2277.
  • 9Athalye A, Bolic M, and Hong S, et al Generic hardware architectures for sampling and resampling in particle filters. EURASIP Journal of Applied Signal Processing, 2005, (17): 2888-2902.
  • 10郭福成,李宗华,孙仲康.无源定位跟踪中修正协方差扩展卡尔曼滤波算法[J].电子与信息学报,2004,26(6):917-922. 被引量:34

共引文献10

同被引文献21

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部