期刊文献+

模糊划分的决策树方法 被引量:1

Decision Tree Based on Fuzzy Discretization
下载PDF
导出
摘要 在许多优化问题中,目标值是连续的。对这类问题,首先对目标值进行离散化,再采用决策树方法提取规则。在一定程度上,相比直接对连续的目标值优化可提高正确率,并增加结果的可理解性。为了克服分段划分带来的突变性,可将目标值进行模糊划分,再采用决策树方法提取规则,这样进一步可提高正确率。 The targets of many optimization problems contain continuous value. In order to solve these problems conveniently, discretization is applied on them as a preprocessing step. Compared with the algorithms without such step, this usually improves the accuracy of the result and enhances its understandability. However ordinary discretization usually results in drastic and unreasonable change in its result. To overcome this Problem this paper proposes a new method that discretizes the continuous target using fuzzy logic, and then uses decision be to extract the rules lies. in the training data. Experiments involved in this paper prove that this method could improve the accuracy further more.
出处 《计算机仿真》 CSCD 2000年第6期19-20,35,共3页 Computer Simulation
基金 国家863高技术计划资助!(863-511-945-005)(863-306-ZD13-05-6)。
关键词 决策树 模糊逻辑 模糊划分 优化问题 Decision tree Information entropy Fuzzy logic
  • 相关文献

参考文献4

  • 1[1]Quinlan J R. Induction on decision trees [J]. Machine Leaming.1986,1(1):81-106
  • 2[2]Quinlan J R. Decision Trees and Decisionmaking[J]. IEEE Transaction on Systems, Man, and Cybernetics. 1990, 20(2): 339- 346
  • 3[3]Zadeh L A. Fuzzy Sets[J]. Information and Control, 1965,8:338-353
  • 4[4]Boyen X. Automatic induction of fuzzy decision trees and its application to power system[J]. Fuzzy sets and Systems, 102(1), 1999:3-19

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部