期刊文献+

非均质含水层中渗流与溶质运移研究进展 被引量:25

Review of the Study of Groundwater Flow and Solute Transport in Heterogeneous Aquifer
原文传递
导出
摘要 含水层的非均质性控制着地下水渗流和溶质迁移特性,准确定量化描述非均质含水层中的渗流和溶质迁移问题受到广泛关注,已成为地球科学领域中的研究热点。首先从非均质含水层地下水流和溶质迁移理论模型、矩分析、多尺度进行系统综述,指出尺度转换在目前水文地质研究中主要解决的问题以及存在的问题;其次从非均质含水层场地试验、不确定性以及速度连通性等方面分析了该方向的研究进展;最后指出地球物理反演含水层非均质性、随机理论与随机模拟软件开发、尺度转换及速度连通性的不确定性问题、非均质性与水文地质条件关系研究4个方面是该领域今后的主要研究方向。 Natural aquifer heterogeneity controls the groundwater flow and solute transport, and how to accu- rately quantify the flow and solute transport in heterogeneous aquifers has received wide attention by many scholars, and has become a hot research topic in earth science. Theoretically, a systematic review is given by the following aspect: flow and solute transport model, moment analysis, multi-scale analysis. The resolved and remained issues for scale conversion in hydrogeology research are pointed out. Secondly, recent advances of heterogeneous field test, uncertainty and velocity connectivity are analyzed. Finally, the geophysical inversion of aquifer heterogeneity, stochastic theory and development of stochastic simulation software, scale conversion and uncertainty of velocity connectivity, and the relationship between heterogeneity and hydrogeologieal condition on the major four aspects of the future research direction is pointed out.
出处 《地球科学进展》 CAS CSCD 北大核心 2014年第1期30-41,共12页 Advances in Earth Science
基金 国家自然科学基金面上项目"非均质含水层中有机污染物迁移机理研究"(编号:41272261)资助
关键词 非均质含水层 矩分析 多尺度 不确定性 连通性 Heterogeneous aquifer Moment analysis Multi-scale Uncertainty Connectivity.
  • 相关文献

参考文献105

  • 1Qiu j. China faces up to groundwater crisis[Jl. Nature, 2010, 466(7 304) : 308.
  • 2Zheng C, Liu J. China' s "Love Canal" moment? [J]. Science, 2013,340(6 134) : 810.
  • 3Freeze R A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media [ J ]. Water Resources Research, 1975,11 ( 5 ) : 725-741.
  • 4Dagan G. Stochastic modeling of groundwater flow by uncondition- al and conditional probabilities. Ⅱ. The solute transport[ J]. Wa- ter Resources Research, 1982,18 (4) : 835-848.
  • 5Dagan G. Solute transport in heterogeneous porous formations[ J].Journal of Fluid Mechanics, 1984,145 : 151-177.
  • 6Gelhar L W, Axness C L. Three-dimensional stochastic analysis of macrodispersion in aquifers[ J]. Water Resources Research, 1983, 19(1) : 161-180.
  • 7Molz F J, Rajaram H, Lu S L. Stochastic fractal-based models of heterogeneity in subsurface hydrology: Origins, applications, limi- tations, and future research questions [ J ]. Reviews of Geophysics, 2004,42( 1 ) : RG1002, doi: 10. 1029/2003RG000126.
  • 8Berkowitz B, Scher H, Silliman S E. Anomalous transport in labo- ratory-scale, heterogeneous porous media[ J]. Water Resources Re- search, 2000,36( 1 ) : 149-158.
  • 9Cushman J H, Ginn T R. Fractional advection-dispersion equa- tion: A classical mass balance with convolution-Fickian flux [ J 1. Water Resources Research, 2000,36 ( 12 ) : 3 763-3 766.
  • 10Benson D A, Schumer R, Meerschaert M M, et al. Fractional dispersion, levy motion, and the MADE tracer tests[ J]. Trans- port in Porous Media, 2001,42(1/2) : 211-240.

同被引文献470

引证文献25

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部