期刊文献+

圆柱表面电渗驱动液体薄膜流动特性 被引量:1

Characteristics of Thin Film Flow on Cylinder Driven by Electro-osmosis
下载PDF
导出
摘要 以Debye-H(u|¨)ckel假设近似下线性化的Possion-Boltzmann方程和黏性不可压缩流体运动的Navier-Stokes方程为基础,采用漏电介质模型,分别研究了直流(direct current,DC)稳恒电场和交流(alternating current,AC)周期电场驱动下柱体表面电渗驱动液体薄膜问题,得到了流场的电位势、速度分布的精确解.结果表明,定常解的流速与电位势仅相差一个常数,而自由面上流速只与自由面电位势和圆柱固壁电位势的比值α有关.周期电场下的流速振幅、流场中与固壁双电层中的流速相位差,均与雷诺数有密切的关系:当雷诺数较小时,周期电场下流速振幅与定常解相近;随着雷诺数的增大,固壁附近流速振幅减小,相位差增大.当α较小时,自由面上流速振幅随着雷诺数的增大而减小;当α较大时,流速振幅随着霄诺数的增大而增大. A thin film flow on a cylinder driven by electro-osmosis in direct current (DC) and alternating current (AC) electric field are analytically investigated respectively. Analytical solutions of electric potential and flow velocity are obtained by solving viscous incompressible hydrodynamic equations coupling with linearized Possion-Boltzmann equation based on the leaky dielectric model and the Debye-Hiickel approximation. In a DC electric field, the dimensionless flow velocity just differs from the electric potential by a constant. The flow velocity on free surface only depends on a ratio a between the electric potential on the free surface and the potential on the cylindrical surface. In an AC electric field, the results show the amplitude of flow velocity. The phase difference between flow velocity in flow field and that in the electrical double layer is closely related to the Reynolds number. Amplitude of flow velocity in an AC periodic electric field is similar to that in a DC steady electric field in low Reynolds number. With the increase of the Reynolds number, the amplitude of flow velocity decreases near the solid surface, while the phase difference increases. The amplitude of flow velocity on a free surface decreases/increases as the Reynolds number increases for low/high α.
作者 李军 胡国辉
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期579-584,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11272197 11372175) 教育部博士点基金资助项目(20103108110004) 上海市教委创新基金资助项目(14ZZ095)
关键词 双电层 自由面 电渗流 雷诺数 electrical double layer free surface electro-osmotic flow Reynolds number
  • 相关文献

参考文献18

  • 1REUSS F F. Charge-induced flow[A].1809.327-337.
  • 2BURGREEN D,NAKACHE F. Electrokinetic flow in ultrafine capillary slits[J].The Journal of Physical Chemistry,1964,(05):1084-1091.
  • 3LEVINE S,MARRIOTT J R,NEALE G. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J].{H}Journal of Colloid and Interface Science,1975.136-149.
  • 4TSAO H K. Electroosmotic flow through an annulus[J].{H}Journal of Colloid and Interface Science,2000.247-250.
  • 5WANG C Y,LIU Y H,CHANG C C. Analytical solution of electro-osmotic flow in a semicircular microchannel[J].{H}Physics of Fluids,2008,(06):063105.
  • 6DUTTA P,BESKOK A. Analytical solution of time periodic electroosmotic flows:analogies to stokes'second problem[J].{H}Analytical Chemistry,2001.5097-5102.
  • 7WANG X,CHEN B,WU J. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel[J].{H}Physics of Fluids,2007,(12):127101.
  • 8ERICKSON D,LI D. Analysis of alternating current electroosmotic flows in a rectangular microchannel[J].{H}LANGMUIR,2003.5421-5430.
  • 9BRASK A,GORANOVI(c) G,JENSEN M J. A novel electro-osmotic pump design for nonconducting liquids:theoretical analysis of flow rate-pressure characteristics and stability[J].{H}Journal of Micromechanics and Microengineering,2005.883-891.
  • 10Joo S W. A new hydrodynamic instability in ultrathin film flows induced by electro-osmosis[J].{H}JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY,2008.382-386.

二级参考文献24

  • 1聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究[J].分析化学,2004,32(8):988-992. 被引量:6
  • 2吴健康,王贤明.生物芯片微通道周期性电渗流特性[J].力学学报,2006,38(3):309-315. 被引量:14
  • 3Dutta P, Beskok A, Warburton TC. Numerical simulation of mixed electroosmotic/pressure driven micro flows. Nu- merical Heat Transfer Part A, 2002, 41:131-148.
  • 4Reuss F. Sur un nouvel effet de le electricite glavanique. Mere Soc Imp Nat Mosc, 1809, 2:327-37.
  • 5Ghosal S. Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech, 2006, 38:309-338.
  • 6Park HW, Lee JS, Kim TW. Comparison of the Nernst- Planck model and the Poisson-Boltzmann model for elec- troosmotic flows in microchannels. J Colloid Interface Sci, 2007, 315:731-739.
  • 7Burgreen D, Nakache FR. Electrokinetic flow in ultrafine capillary slits. J Phys Chem, 1964, 68:1084-1091.
  • 8Levine S, Marriott JR, Neale G, et al. Theory of elec- trokinetic flow in fine cylindrical capillaries at high zeta- potentials. J Colloid Interface Sci, 1975, 52:136-149.
  • 9Tsao HK. Electroosmotic flow through an annulus. J Col- loid Interface Sci, 2000, 225:247-250.
  • 10Wang CY, Liu YH, Chang CC. Analytical solution of electro-osmotic flow in a semicircular microchannel. Phys Fluids, 2008, 20:063105.

共引文献4

同被引文献22

  • 1SAVILLE D A.Electrohydrodynamics:The TaylorMelcher Leaky Dielectric Model[J].Fluid Mech,1997,29:27-64.
  • 2ESMAEELI A,REDDY M N.The Electrohydrodynamics of Superimposed Fluids Subjected to a Nonuniform Transverse Electric Field[J].International Journal of Multiphase Flow,2011,37(10):1331-1347.
  • 3ALLAN R S,MASON S G.Particle Behavior in Shear and Electric Fields.I.Deformation and Burst of Fluid Drops[C].Proc.R.Soc.A,1962,267:45-61.
  • 4MELCHER J R,TAYLOR G I.Electrohydrodynamics:a Review of The Role of Interfacial Shear Stresses[J].Annu Review of Fluid Mechanics,1969,1:111-146.
  • 5CHOI W,SHARMA A,QIAN S,et al.Is Free Surface Free in Micro-scale Electrokinetic Flows[J].Journal of Colloid and Interface Science,2010,347(1):153-155.
  • 6CONROY D T,CRASTER R V,MATAR O K,et al.Dynamics and Stability of an Annular Electrolyte Film[J].Fluid Mech,2010,656:481-506.
  • 7PEASE L F,RUSSEL W B.Linear Stability Analysis of Thin Leaky Dielectric Films Subjected to Electric Fields[J].Non-Newtonian Fluid Mech,2002,102(2):233–250.
  • 8TAYLOR G I,MCEWAN A D.The Stability of a Horizontal Fluid Interface in a Vertical Electric Field[J].Fluid Mech,1965,22(1):1-15.
  • 9SCHAFFER E,THURN A T,RUSSELL T P,et al.Electrically Induced Structure Formation and Pattern Transfer[J].Nature,2000,403(6772):874-877.
  • 10SHANKAR V,SHARMA A.Instability of The Interface Between Thin Fluid Films Subjected to Electric Fields[J].Journal of Colloid and Interface Science,2004,274:294-308.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部