期刊文献+

Marshall-Olkin二元指数分布 被引量:1

The Marshall-Olkin Bivariate Exponential Distribution
下载PDF
导出
摘要 指数分布是应用非常广泛的寿命分布模型。文章对Marshall-Olkin二元指数分布模型讨论了它的边际分布,得到边际分布都服从一元指数分布;研究了该二元指数分布模型的应用和性质,得到由该分布构造的统计结构不能被计数测度控制,也不能被二维Lebesgue测度控制。 The exponential distribution is the life distribution model that is applied very widely. In this paper discussed the Marshall -- Olkin binary exponential distribution model and its marginal distribution which follow one--dimension exponentia distribution; and then studied the application and properties of binary exponential distribution model. The statistical structure constructed by this distribution is neither controlled by the counter measure, nor controlled by the two--dimensional Lebesgue measure.
出处 《新疆师范大学学报(自然科学版)》 2013年第4期63-65,共3页 Journal of Xinjiang Normal University(Natural Sciences Edition)
关键词 二元指数分布 边际分布 协方差 计数测度 LEBESGUE测度 Bivariate Exponential Distribution Marginal Distribution Covariance Counter meas- urement Lebesgue measurement
  • 相关文献

参考文献4

二级参考文献30

  • 1彭江艳,何平.多维指数分布模型[J].数学的实践与认识,2004,34(7):102-106. 被引量:2
  • 2叶慈南.GBVE分布的参数估计[J].系统科学与数学,1995,15(1):39-49. 被引量:8
  • 3徐茂超,李效虎.二元反平均剩余寿命的一些性质[J].兰州大学学报(自然科学版),2005,41(4):112-115. 被引量:1
  • 4徐冬元,叶慈南,汪美辰.一类多维指数分布的参数估计[J].系统科学与数学,2006,26(5):619-628. 被引量:1
  • 5[1]Gumbel E J. Bivariate Exponential Distribution. JASA, 1960, 55:698-707
  • 6[2]Hougaard P. A Class of Multivariate Failure Time Distribution. Biometrika, 1986, 73(3): 671-678
  • 7[3]Feller W. An Introduction to Probability Theory and Its Application. 2nd Edition. New York: John Wiley & Sons Inc., 1966
  • 8[4]Lee L. Multivariate Distribution Having Weibull Properties. Journal of Multivariate Analysis, 1979,9:267-277
  • 9[5]Abramowity M, Stegun I A. Handbook of Mathematical Functions. National Bureau of Standards, Washington D.C. Reprinted by New York: Dover, 1970
  • 10[6]Rao C R. Linear Statistical Inference and Its Application. New York: John Wiley & Son, 1973

共引文献8

同被引文献10

  • 1李国安.多元Marshall-Olkin型指数分布的特征及其参数估计[J].工程数学学报,2005,22(6):1055-1062. 被引量:17
  • 2MARSHALL A W,OLKIN I. A New Method of Adding a Parameter to a Family of Distributions with Applica- tions to the Exponential and Weibull Families [J]. Bi- omertrika, 1997,84 : 641.
  • 3SRINIVASA R G, GHITANY M E. Reliability Test Plans for Marshall-Olkin Extended Exponential Dis- tribution[J]. Applied Mathematical Sciences, 2009,55 (3) : 2745.
  • 4SRINIVASA R G,GHITANY M E. An Economic Relia- bility Test Plan for Marshall-Olkin Extended Exponential Distribution[J]. Applied Mathematical Sciences, 2011,3 (5) :103.
  • 5SRIVASTAVA A K, KUMAR V, HAKKAK A A. Parameter Estimation of Marshall- Olkin Extended Exponential Distribution Using Markov Chain Monte Carlo Method for Informative Set of Priors [J]. Inter- national Journal of Advances in Science and Technol- ogy,2011,2(4) :76.
  • 6PUSHKARNA N,SARAN J, TIWARI R. Bonferroni and Gini Indices and Recurrence Relations for Mo- ments of Progressive Type-II Right Censored Order Statistics from Marshall-Olkin Exponential Distribu- tion[J]. Journal of Statistical Theory and Applica- tions,2013,12(3) 1306.
  • 7$ARHAN A M ,ALAMERI M ,AL-WASEL I . A- nalysis of Progressive Censoring Competing Risks Data with Binomial Removals[J]. Journal of Mathe- matics Analysis, 2008,2 (20) : 965.
  • 8EFRON B. Bootstrap methods:Another Look at the Jackknife[J]. Annals of Statistics, 1979,7 (1) : 1.
  • 9PITUCH K A, STAPLETON L M. The Perform- ance of Methods to Test Upper-Level Mediation in the Presence of Nonnormal Date [J]. Multivariate Bechavioral Research, 2008,43 (2) : 237.
  • 10颜荣芳,张娟.非对称Marshall-Olkin Laplace分布及其在自回归模型中的应用[J].应用概率统计,2010,26(3):245-254. 被引量:2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部