摘要
指数分布是应用非常广泛的寿命分布模型。文章对Marshall-Olkin二元指数分布模型讨论了它的边际分布,得到边际分布都服从一元指数分布;研究了该二元指数分布模型的应用和性质,得到由该分布构造的统计结构不能被计数测度控制,也不能被二维Lebesgue测度控制。
The exponential distribution is the life distribution model that is applied very widely. In this paper discussed the Marshall -- Olkin binary exponential distribution model and its marginal distribution which follow one--dimension exponentia distribution; and then studied the application and properties of binary exponential distribution model. The statistical structure constructed by this distribution is neither controlled by the counter measure, nor controlled by the two--dimensional Lebesgue measure.
出处
《新疆师范大学学报(自然科学版)》
2013年第4期63-65,共3页
Journal of Xinjiang Normal University(Natural Sciences Edition)
关键词
二元指数分布
边际分布
协方差
计数测度
LEBESGUE测度
Bivariate Exponential Distribution
Marginal Distribution
Covariance
Counter meas- urement
Lebesgue measurement