期刊文献+

三角域上双变量Chebyshev多项式及其与Bernstein基的转换

Bivariate Chebyshev Polynomials and Transformation of Chebyshev-Bernstein Basis on Triangular Domains
下载PDF
导出
摘要 为了更好的解决三角域上的Bézier曲面在CAGD中的最佳一致逼近问题,构造出了三角域上的双变量Chebyshev正交多项式,研究了与单变量Chebyshev多项式相类似的性质,并且给出了三角域上双变量Chebyshev基和Bernstein基的相互转换矩阵。通过实例比较双变量Chebyshev多项式与双变量Bernstein多项式以及双变量Jacobi多项式的最小零偏差的大小,阐述了双变量Chebyshev多项式的最小零偏差性。 For solving least squares approximation problem of B6zier surface effectively and simply on triangular domains in CAGD, we present a polynomial representation, bivariate Chebyshev polynomials, adapted to a triangular domain, with properties similar to the univariate Chebyshev form. We convert and compare this representation to the Bernstein-B6zier and Jacobi representations. We also give some examples to illustrate that the deviation of the bivariate Chebyshev polynomials compared with zero is the least than of the bivariate Bernstein polynomials and bivariate Jacobi polynomials.
作者 江平 洪为琴
出处 《图学学报》 CSCD 北大核心 2013年第6期22-29,共8页 Journal of Graphics
关键词 三角域 BERNSTEIN基 CHEBYSHEV多项式 triangular domains Bernstein basis Chebyshev polynomial
  • 相关文献

参考文献10

  • 1Rababah A. Transformation of Chebyshev-Bemstein polynomials basis[J].Computational Methods in Applied Mathematics,2003,(02):608-662.
  • 2Rababah A. Jacobi-Bernstein basis transformation[J].Computational Methods in Applied Mathematics,2004,(02):206-214.
  • 3FaroukiR T. Legendre-Bemstein basis transformations[J].{H}Journal of Computational and Applied Mathematics,2000,(01):145-160.
  • 4蔡华辉,王国瑾.基于约束Jacobi基的多项式反函数逼近及应用[J].计算机辅助设计与图形学学报,2009,21(2):137-142. 被引量:3
  • 5Farouki R T,Goodman T N T,Sauer T. Construction of orthogonal bases for polynomials in Bemstein form on triangular and simplex domains[J].{H}Computer Aided Geometric Design,2003,(02):209-230.
  • 6Sauer T. Jacobi polynomials in Bernstein form[J].{H}Journal of Computational and Applied Mathematics,2007,(01):149-158.
  • 7Lewanowicz S,Woiny P. Connections between two-variable Bemstein and Jacobi polynomials on the triangle[J].{H}Journal of Computational and Applied Mathematics,2006,(02):520-523.
  • 8蔡华辉,王国瑾.三角域上双变量Jacobi-Bernstein的基转换及应用[J].计算机辅助设计与图形学学报,2009,21(10):1394-1400. 被引量:1
  • 9Farin G. Curves and surfaces for CAGD:a practical guide[M].San Francisco:Morgan Kaufmann Publishers,2002.
  • 10孙慧娟,赵小香.有关雅可比多项式一些性质的研究[J].四川理工学院学报(自然科学版),2009,22(6):37-41. 被引量:2

二级参考文献19

  • 1ZHANG Renjiang,WANG Guojin.Constrained Bézier curves' best multi-degree reduction in the L_2-norm[J].Progress in Natural Science:Materials International,2005,15(9):843-850. 被引量:20
  • 2CHENG Min,WANG Guo-jin.Rational offset approximation of rational Bézier curves[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(9):1561-1565. 被引量:2
  • 3陈文喻,汪国昭.反函数的混合多项式逼近[J].浙江大学学报(理学版),2006,33(5):507-509. 被引量:2
  • 4Farin G. Curves and surfaces for CAGD: a practical guide[M]. 5th ed. San Francisco: Morgan Kaufmann Publishers, 2002.
  • 5Li Y M, Zhang X Y. Basis conversion among Bezier, Tchebyshev and Legendre [J]. Computer Aided Geometric Design, 1998, 15(6): 637-642.
  • 6Farouki R T. Legendre-Bernstein basis transformations [J]. Journal of Computational and Applied Mathematics, 2000, 119 (1): 145-160.
  • 7Rababah A. Jacobi-Bernstein basis transformation [J]. Computational Methods in Applied Mathematics, 2004, 4 (2) : 206-214.
  • 8Farouki R T, Goodman T N T, Sauer T. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains [J].Computer Aided Geometric Design, 2003, 20(2): 209-230.
  • 9Koornwinder T H. Two-variable analogues of the classical orthogonai polynomials [M] //Askey R A. Theory and Application of Special Functions. New York: Academic Press, 1975:435-495.
  • 10Dunkl C F, Xu Y. Orthogonal polynomials of several variables[M]. Cambridge: Cambridge University Press, 2001.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部