期刊文献+

晶格常数的变化对FeNCN电子结构影响的第一性原理研究

First Principles Study on the Electronic Structure of FeNCN Influenced by the Change of Lattice Constant
下载PDF
导出
摘要 采用第一性原理计算方法研究了c/a形变下FeNCN晶体的电子结构。结果表明在c/a形变下FeNCN晶体经历了半金属性到金属性的变化,当c/a不大于2.5时,FeNCN晶体表现为半金属性;当c/a大于2.5时,FeNCN晶体表现为金属性。Fe原子是晶体分子磁矩的最主要的贡献者,其自旋磁矩受c/a变化的影响程度较小。当FeNCN晶体表现为半金属性时,其分子磁矩能维持在稳定的整数值8.00μB;随着c/a的增加,分子磁矩逐渐减小。对c/a为2.3时FeNCN晶体电子结构的研究表明:此时自旋向上的子能带表现出间接带隙的半导体特征,晶体的半金属隙为0.11 eV。 The electronic structure of FeNCN with the change of c/a was studied by employing the first-principles method. The results show that the FeNCN undergoes a change from the semi-metallic character to metallic one with the change of c/a. The FeNCN presents semi-metallic character and metallic character when c/a≤2.5 and c/a〉25, respectively. The Fe atom is the major contributor to the total magnetic moment of FeNCN, whereas, the change of c/a has no obvious influence on the spin magnetic moment of Fe atom. The total magnetic moment can maintain the integral value of 8.00μB when FeNCN presents semi-metallic character, and the total magnetic moment will decreases when c/a increases. The investigations on the electronic structure of FeNCN with c/a=2.3 show that the spin-up states indicates an indirect band gap character and the semi-metallic gap of FeNCN is 0.11 eV.
作者 黄海铭
出处 《湖北汽车工业学院学报》 2013年第4期68-71,共4页 Journal of Hubei University Of Automotive Technology
基金 湖北省教育厅科学技术研究项目(Q20131805)
关键词 第一性原理 电子结构 态密度 磁矩 半金属隙 first principles electronic structure density of state magnetic moment semi-metallic gap
  • 相关文献

参考文献12

  • 1Masashi Kurashina, Masaki Murata, Tokuko Watanabe, et al. Synthesis of poly, a new organometallic conducting polymer with ferromagnetic interaction in its reduced state [Jl. Journal of the American Chemical Society, 2003,125 (41) : 12420-12421.
  • 2Carlo Bellitto, Elvira M. Bauer, Philippe LOone, et al. Synthesis, structural determination and magnetic properties of layered hybrid organic-inorganic, iron (II) propylphosphonate, Fe [(CH3 (CH2)2PO3) (H20)], and iron (II) octadecylphosphonate [J]. Journal of Solid State Chemistry, 2006,179 (2) : 579-589.
  • 3He Wen, Minhua Cao, Genban Sun, et al. Hierarchical three-dimensional cobalt phosphate microarchitectures: large-scale solvothermal synthesis, characterization, and magnetic and microwave absorption properties [J]. Tile Journal of Physical Chemistry. C, 2008,112 (41): 15948- 15955.
  • 4Jan Demel, Pavel Kuba? t, Ivan Jirka, et al. Inorganic- organic hybrid materials: layered zinc hydroxide salts with intercalated porphyrin sensitizers [Jl- The Journal of Physical Chemistry C, 2010, 114 (39) : 16321-16328.
  • 5Xiaohui Liu, Manuel Krott, Paul Mtiller. Synthesis, erystal structure, and properties of MnNCN, the first earbodiimide of a magnetic transition metal [J]. Inorganic Chemistry, 2005, 44 (9) : 3001-3003.
  • 6Manuel Krott, Xiaohui Liu, Boniface P, et al. Synthesis, crystal-structure determination and magnetic properties of two new transition-metal carbodiimides: CoNCN and NiNCN [J]. Inorganic Chemistry, 2007,46 (6): 2204- 2207.
  • 7LI Zhi-An,CHEN Lang-Xing,CAI Jing-Ru.First-Principles Study on Electronic Structure and Half-Metallic Properties of CoNCN and NiNCN[J].Communications in Theoretical Physics,2009,52(10):707-709. 被引量:2
  • 8Xiaohui Liu, Richard Dronskowski, Reinhard K. Characterization of the magnetic and structural properties of copper carbodiimide, CuNCN, by neutron diffraction and first-Principles evaluations of its spin exchange interactions [J]. The Journal of Physical Chemistry C, 2008, 112 (29) : 10587-11074.
  • 9Hongping Xiang, Xiaohui Liu, Riehard Dronskowski. Theoretical Reinvestigation of the Electronic Structure of CuNCN: the Influence of Packingon the Magnetic Properties [J]. The Journal of Physical Chemistry C, 2009, 113 (43): 18891 - 18896.
  • 10Xiaohui Liu, Ludwig Stork, Manfred Speldrich. FeNCN and Fe (CNNH)2: synthesis, structure, and magnetic properties of a nitrogen-based pseudo-oxide and - hydroxide of divalent iron [J]. Chemistly-a European Journal 2009, 15 (7) : 1558-1561.

二级参考文献10

  • 1M. Krott, X.H. Liu, Boniface P.T. Fokwa, M. Speldrich, H. Lueken, and R. Dronskowski, Inorg. Chem. 46 (2007) 2204.
  • 2C.B. Aakeroy, N. Schultheiss, and J. Desper, Inorg. Chem. 44 (2005) 4983.
  • 3R. Gheorghe, M. Andruh, A. Muller, and M. Schmidtmann, Inorg. Chem. 41 (2002) 5314.
  • 4S.W. Keller and S. Lopez, J. Am. Chem. Soc. 121 (1999) 6306.
  • 5T.A. Vannelli and T.B. Karpishin, Inorg. Chem. 38 (1999) 2246.
  • 6Z. Fang, Z.L. Liu, K.L. Yao, and Z.G. Li, Phys. Rev. B 51 (1995) 1304.
  • 7K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147 (2002) 71.
  • 8K.L. Yao, Y.L. Li, Z.L. Liu, and S.H. Qu, Physica B 369 (2005) 123.
  • 9Y.X. Wang, W.L. Zhong, C.L. Wang, and P.L. Zhang, Optics Communications 201 (2002) 79.
  • 10K.L. Yao, Y.L. Li, and Z.L. Liu, J. Magnet. Magnet. Mat. 301 (2006) 112.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部