期刊文献+

基于一致性预测器的中医证素组合诊断模型

Conformal Predictor Based Syndrome Differentiation for Traditional Chinese Chronic Fatigue Diagnosis
下载PDF
导出
摘要 构建中医证素组合智能诊断模型需要特殊的域预测分类器而非传统的点预测分类器.引入一致性预测器(conformal predictor,CP),以算法随机性水平值为证素的重要性度量,以算法风险水平为阈值进行域预测输出,以中医慢性疲劳样本集为研究对象,随机森林(random forest,RF)等传统机器学习算法被嵌入到CP框架中计算样本奇异值.实验结果表明,CP-RF模型不仅拟合率比其他域预测分类器高,还对阈值具有很好的鲁棒性,克服了阈值对预测域的波动性,解决了中医多证素组合诊断关键的技术难题之一,同时CP-RF模型的预测域错误率能够被算法风险水平阈值所校准,表明其阈值具有明确的统计意义和可解释性,能够被中医医生所接受. Syndrome differentiation in traditional Chinese medicine(TCM)which identifies the combination of some selected syndrome factors as the diagnosis for the patient falls into the region prediction rather than point prediction.In this study,conformal predictor(CP)is introduced in the literature of syndrome differentiation diagnosis which provides algorithms randomness level as the importance of syndrome factor and applies the significance level to serve as the threshold.The study aims to the chronic fatigue(CF) dataset in TCM,for which many novel machine learning algorithms,such as random forest(RF),have been plugged into the framework of CP to compute the nonconformity score of the example.The experimental results show that CP-RF highlights not only significantly high matching ratio beyond other region classifiers but robust to threshold value as well.The latter overcomes the fluctuation of region prediction derives from different threshold values and solves one of the most critical challenges in TCM.Moreover,the error rate of CP-RF is hedged by the significance level,which illustrates statistically interpretability and is easy to acceptance by TCM practitioners.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期41-45,共5页 Journal of Xiamen University:Natural Science
基金 福建省自然科学基金(2012J01274) 华侨大学高层次人才科研项目(09BS515)
关键词 一致性预测器 证素 中医 慢性疲劳 conformal predictor syndrome differentiation traditional Chinese medicine(TCM) chronic fatigue
  • 相关文献

参考文献10

  • 1朱文锋,何军锋,晏峻峰,黄碧群.确定证素辨证权值的“双层频权剪叉”算法[J].中西医结合学报,2007,5(6):607-611. 被引量:24
  • 2Su S B. Recent advances in zheng differentiation research in traditional Chinese medicine[J].International Journal of Integrative Medicine,2013,(07):1-10.
  • 3Liu G P,Li G Z,Wang Y L. Modelling of inquiry di agnosis for coronary heart disease in traditional Chinesemedicine by using multi-label learning[J].BMC Complementary and Alternative Medicine,2010,(01):37-49.
  • 4Vovk V,Gammerman A,Shafer G. Algorithmic learning in a random world[M].New York,USA:Springer,2005.
  • 5王天芳,薛晓琳.亚健康状态与慢性疲劳综合征[J].中国中西医结合杂志,2008,28(1):77-79. 被引量:20
  • 6张振贤,张烨,王扬,陈敏,吴丽丽,王晓静,沈箭箫.理虚解郁方对慢性疲劳综合征患者负性情绪及皮质醇与5-羟色胺的影响[J].上海中医药大学学报,2012,26(5):38-40. 被引量:18
  • 7Gammerman A,Vovk V. Hedging predictions in machine learning[J].Computer Journal,2007,(02):151-177.
  • 8Wang H Z,Lin C D,Yang F. Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine[J].Computers in Biology and Medicine,2009,(05):425-432.
  • 9Vanderlooy S,Maaten L V D. Sprinkhuizen-Kuyper LOffline learning with transductive confidence machines:an empirical evaluation[A].Germany:Leipzig,2007.310-323.
  • 10洪燕珠,周昌乐,张志枫,许家佗.慢性疲劳患者中医常见证候要素研究[J].中医杂志,2009,50(12):1114-1116. 被引量:6

二级参考文献31

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部