摘要
利用弱c#-正规子群研究有限群的p-幂零性,得到以下结论:①设G是群,HG,使得G/H为p-幂零,P∈Sylp(G),若P的极大子群皆在G中弱c#-正规且NG(P)为p-幂零,则G为p-幂零.②G是群,HG使得G/H为p-幂零,P∈Sylp(H),若P的2-极大子群皆在G中弱c#-正规且NG(P)为p-幂零的,则G为p-幂零.
The influence of Weakly c#-normal Subgroup on the p-nilpotency of finite groups is investigated. (1)Let G be a finite group, H△G, and G/H is p-nilpotent, Pff sy/p(G), if every maximal subgroup of P is a weakly c#-normal subgroup of G, and Nc.(P) is p-nilpotent, then G is p-nilpotent. (2) Let G be a finite group, H△G and G/H is p-nilpotent, P∈ sylp(H), if every second maximal subgroup of P is a weakly c#-normal subgroup of G and NG(P) is p- nilpotent, then G is p-nilpotent.
出处
《兰州文理学院学报(自然科学版)》
2014年第1期27-29,共3页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
新疆维吾尔自治区普通高等学校重点学科开放课题(2012ZDXK06)
关键词
有限群
正规子群
P-幂零
finite groups
normal subgroups
p-nilpotency.