期刊文献+

弱c#-正规子群与有限群的p-幂零性

Weakly c#-Normal Subgroups and the p-nilpotency of Finite Groups
下载PDF
导出
摘要 利用弱c#-正规子群研究有限群的p-幂零性,得到以下结论:①设G是群,HG,使得G/H为p-幂零,P∈Sylp(G),若P的极大子群皆在G中弱c#-正规且NG(P)为p-幂零,则G为p-幂零.②G是群,HG使得G/H为p-幂零,P∈Sylp(H),若P的2-极大子群皆在G中弱c#-正规且NG(P)为p-幂零的,则G为p-幂零. The influence of Weakly c#-normal Subgroup on the p-nilpotency of finite groups is investigated. (1)Let G be a finite group, H△G, and G/H is p-nilpotent, Pff sy/p(G), if every maximal subgroup of P is a weakly c#-normal subgroup of G, and Nc.(P) is p-nilpotent, then G is p-nilpotent. (2) Let G be a finite group, H△G and G/H is p-nilpotent, P∈ sylp(H), if every second maximal subgroup of P is a weakly c#-normal subgroup of G and NG(P) is p- nilpotent, then G is p-nilpotent.
出处 《兰州文理学院学报(自然科学版)》 2014年第1期27-29,共3页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 新疆维吾尔自治区普通高等学校重点学科开放课题(2012ZDXK06)
关键词 有限群 正规子群 P-幂零 finite groups normal subgroups p-nilpotency.
  • 相关文献

参考文献5

  • 1韦华全,张晓荟,杨立英,英琼.弱c~#-正规子群与有限群的p-超可解性[J].广西师范学院学报(自然科学版),2012,29(1):1-4. 被引量:3
  • 2GORENSTEIN D. Finite groups[M].New York:Chelsea,1980.
  • 3DOERK K,HAWKES T. Finite soluble groups[M].Berlin:Walter de Gruyter,1922.
  • 4WIELANDT H. Subnormal subgroups and permutation groups[M].Columbus,Ohio:Lectures given at the Ohio State University,1971.
  • 5徐明曜.有限群导引:上册[M]北京:科学出版社,1999.

二级参考文献7

  • 1樊恽,郭秀云,岑嘉评.关于子群的两种广义正规性的注记[J].数学年刊(A辑),2006,27(2):169-176. 被引量:33
  • 2WANG Y.c-Normality of groups andits properties[J].J Algebra,1996,180:954-965.
  • 3GASCH TZ W.Praefrattini gruppen[J].Arch Math,1962,13:418-426.
  • 4WEI H,WANG Y,LI Y.Onc-supplemented maxi mal and mini mal subgroups of Sylowsubgroups of finite groups[J].Proc Amer Math Soc,2004,132:2197-2204.
  • 5WANG Y,WEI H,LI Y.Ageneralization of Kramer’s theoremandits applications[J].Bull Austral Math Soc,2002,65:467-475.
  • 6GORENSTEI N D.Finite Groups[M].New York:Chelsea,1980.
  • 7ROBI NSON DJ S.A Course in the Theory of Groups[J].New York:Springer-Verlag,1980.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部