期刊文献+

一种结合半监督算法和SVM的聚类方法 被引量:1

A New Clustering Method by Combining Semi-supervised Algorithm and SVM
下载PDF
导出
摘要 对于已经分类的数据和大量未分类数据,在运算过程中,采用一种新的半监督聚类算法为支持向量机提供新的训练数据.随后,利用支持向量机判别出所有数据的类别属性,并选取最可靠的点加入已分类集合.为了验证算法的效率,收集了67张黄瓜叶片色调的数字信息,并对具有6个已分类数据与61个未分类数据的数据集进行半监督聚类分析,以判断这些叶片的健康程度.结果表明,该聚类算法优于其他算法. Durning the run of this algorithm, a novel Fuzzy C-Means Algorithm is used to provide a better training set for a SVM;while a SVM is used to determine the class labels of the whole data set, and the most reliable data is then added to the labeled set. To test the performance of our algorithm, 67 pieces of cucumber leaves which are infected with downy mildew are classified, The result shows this kind of algorithm is better than some other semi-supervised kinds.
出处 《泉州师范学院学报》 2013年第6期49-52,共4页 Journal of Quanzhou Normal University
基金 泉州市科技计划项目(2012Z103) 福建省教育厅科技项目(JK2013037 JA12273)
关键词 黄瓜霜霉病 支持向量机 半监督 模糊聚类 Cucumber Downy mildew SVM semi-supervised fuzzy c-means
  • 相关文献

参考文献9

二级参考文献49

共引文献171

同被引文献12

  • 1Stefan Fau~er, Friedhelm Schwenker. Semi-supervised clustering of large data sets with kernel methods [ J ]. Pattern Recognition Letters, 2014, 37:78 - 84.
  • 2Zhang Yihao, Wen Junhao, Wang Xibin, et al. Semi-supervised learning combining co-training with active learning [J]. Expert Systems with Applications, 2014, 41 (5) : 2372 - 2378.
  • 3Gan Haitao, Sang Nong, Huang Rui, et al. Using clustering analysis to improve semi-supervised classification [ J ]. Neurocomputing, 2013, 101 (1): 290-298.
  • 4Yin Xuesong, Shu Ting, Huang Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization [ J ]. Knowledge-Based Systems, 2012, 35:304 -311.
  • 5Yin Xuesong, Chen Songcan, Hu Enliang, et al. Semi-supervised clustering with metric learning: an adaptive kernel method [J]. Pattem Recognition, 2010, 43:1320 - 1333.
  • 6Mahdieh Soleymani Baghshah, Saeed Bagheri Shouraki. Kernel-based metric learning for semi-supervised clustering [ J ]. Neurocomputing, 2010, 73:1352 - 1361.
  • 7WitoldPedrycz.基于知识的聚类——从数据到信息粒[M].于福生,译.北京:北京师范大学出版社,2008:79—87.
  • 8李春芳,庞雅静,钱丽璞,高爱华.半监督FCM聚类算法目标函数研究[J].计算机工程与应用,2009,45(14):128-132. 被引量:14
  • 9计华,张化祥,孙晓燕.基于最近邻原则的半监督聚类算法[J].计算机工程与设计,2011,32(7):2455-2458. 被引量:7
  • 10施伟民,杨昔阳,李志伟.基于半监督模糊聚类的黄瓜霜霉病受害程度识别研究[J].福建师范大学学报(自然科学版),2012,28(1):33-37. 被引量:7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部