摘要
设T为Banach空间X上的有界线性算子,Y为X的闭子空间且TY■Y.T限制在Y上,可以定义一个从Y到Y的有限线性算子(T|Y)(x)=Tx,■x∈Y,称T|Y为T在Y上的限制算子.文章主要讨论算子T和其限制算子T|Y的谱之间的关系.举例说明了σk(T|Y)σk(T),σe(T|Y)σe(T)和σw(T|Y)σw(T),其中:σe(T),σk(T)和σw(T)分别表示算子T本质谱、Kato本质谱和Weyl谱.
Let T be a bounded linear operator on a Banach space X and let Ybe a closed subspace of X and TY c_ Y .Define an operator T |y on Y by (T | Y) (x) = Tx, V x E Y and T l y is called the restriction of Tto Y .In this paper,we discuss the relationship between the spectrum of operator T and the restriction T |y to Y ,and give two examples of operators to show that ak (T | y ) σk(T) , σ ( T | y ) σ (T) a ( T [ y ) aw (T), where σ (T),σ (T) and 6w (T) denote respectively the essential spectrum, Kato essential spectrum and Weyl spectrum of T.
出处
《泉州师范学院学报》
2013年第6期57-59,共3页
Journal of Quanzhou Normal University
关键词
有界线性算子
限制算子
本质谱
Kato本质谱
WEYL谱
bounded operator
restriction operators
essential spectrum
t(ato essential spectrum
Weyl spectrum