期刊文献+

凸二次规划问题基于核函数的全牛顿步内点算法

A Full-Newton Step Interior-point Algorithm Based on a Kernel Function for Convex Quadratic Optimization
下载PDF
导出
摘要 针对凸二次规划问题,构造了新的核函数。通过构造的核函数来确定搜索方向和逼近度量,接着给出了求解凸二次规划问题的全牛顿步内点算法,最后给出了算法的复杂性界。 For solving convex quadratic optimization, we introduce a new kernel function.Through the new kernel function, we derive a new search direction and proximity measure, then present a full-Netwon step interior-point algorithm. Finally, we prove that the complexity bound of the algorithm.
出处 《咸阳师范学院学报》 2013年第6期1-3,共3页 Journal of Xianyang Normal University
基金 陕西省教育厅科研基金项目(2010JK890)
关键词 凸二次规划问题 内点算法 全牛顿步 核函数 convex quadratic optimization interior-point algorithm full-Newton step kernelfunction
  • 相关文献

参考文献6

  • 1Kojima M,Megiddo N,Noma T. A unified approach to interior point algorithms for linear complementarity problems[M].Springer,Germany:Berlin,1991.
  • 2Kojima M,Megiddo N,Noma T. Homotopy continuation methods for nonlinear complementarity problems[J].Mathematics of Operations Research,1991,(04):754-774.
  • 3Wright S J. Primal-Dual interior-point methods[M].Philadelphia:SIAM,1997.
  • 4Gondzio J. Interior point methods 25 years later[J].European Journal of Operational Reserch,2012,(03):587-601.
  • 5Bai Y Q,E1 Ghami M,Roos C. A new efficient large-update primal-dual interior-point method based on a finite barrier[J].SIAM JOURNAL ON OPTIMIZATION,2003,(03):766-782.
  • 6Zhang Lipu,Xu Yinghong. A full-Newton step interior-point algorithm based on modified Newton direction[J].Operations Research Letters,2011,(05):318-322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部