摘要
针对凸二次规划问题,构造了新的核函数。通过构造的核函数来确定搜索方向和逼近度量,接着给出了求解凸二次规划问题的全牛顿步内点算法,最后给出了算法的复杂性界。
For solving convex quadratic optimization, we introduce a new kernel function.Through the new kernel function, we derive a new search direction and proximity measure, then present a full-Netwon step interior-point algorithm. Finally, we prove that the complexity bound of the algorithm.
出处
《咸阳师范学院学报》
2013年第6期1-3,共3页
Journal of Xianyang Normal University
基金
陕西省教育厅科研基金项目(2010JK890)
关键词
凸二次规划问题
内点算法
全牛顿步
核函数
convex quadratic optimization
interior-point algorithm
full-Newton step
kernelfunction