期刊文献+

谱投影法模拟圆柱形化工管道内流动

Spectral projection method for simulation of the flow in cylindrical chemical pipe
下载PDF
导出
摘要 为了开发高精度和高效数值方法求解圆形化工管道内的流动问题,采用谱投影算法求解Navier-Stokes方程。谱投影算法是将非稳态Navier-Stokes方程的时间离散过程采用具有二阶精度的投影方法,并采用配置点谱方法求解投影方法解耦后的方程。配置点谱方法不仅具有高精度并且容易克服圆柱坐标系的奇点问题。采用文献中具有精确解的算例进行了验证计算,就初始条件和节点数对计算精度的影响进行了分析和比较。结果表明谱投影方法在求解圆柱管道内的流动具有高的精度和效率。 In order to develop a high-accuracy and high-efficiency numerical method for the solution of the flow in cylindrical chem ical pipe, a spectral projection method for the solution of Navier-Stokes equations has been presented. The spectral projection method refers to that a second order projection method is chosen to temporally discretize the Navie^Stokes equations, and the col- location spectral method is adopted to solve these un-decoupled equations which are decoupled by the projection method. The col- location spectral method is featured by high accuracy and is easy to overcome the pole problem in cylindrical coordinates system. An exact solution case is emplyed to validate this spectral projection method, and the effects ot the initial conditions and the reso- lutions on the accuracy are comparatively investigated. The results showed that high accuracy and efficiency can be achieved by this spectral projection method.
出处 《中国科技论文》 CAS 北大核心 2013年第12期1228-1230,1257,共4页 China Sciencepaper
基金 国家自然科学基金资助项目(51176026) 国家高水平大学公派研究生项目(2011608037)
关键词 配置点谱方法 谱投影方算法 NAVIER-STOKES方程 collocation spectral method spectral projection method Navier-Stokes equations
  • 相关文献

参考文献11

  • 1Gottlieb D,Orszag S A. Numerical Analysis of Spectral Methods:Theory and Applications[M].Philippines:SLAM,1977.
  • 2Canuto C,Hussaini M Y,Quarteroni A. Spectral Methods in Fluid Dynamics[M].{H}Berlin:Springer-Verlag,1988.
  • 3向新民.谱方法的数值分析[M]{H}北京:科学出版社,2000.
  • 4Lopez J M,Shen J. An efficient spectral-projection method for the Navier-Stokes equation in cylindrical geometries Ⅰ:axisymmetric Cases[J].{H}Journal of Computational Physics,1998.308-326.
  • 5Lopez J M,Marques F,Shen J. An efficient spectralprojection method for the navier-stokes equation in cylindrical geometries Ⅱ:three-dimensional cases[J].{H}Journal of Computational Physics,2002.384-440.
  • 6Serre E,Pulicani J P. A three-dimensional pseudospectral method for rotating flows in a cylinder[J].{H}COMPUTERS & FLUIDS,2001.491-519.
  • 7Isabelle R,Sandrine H,Eric H. A spectral projection method for the simulation of complex three-dimensional rotating flows[J].{H}COMPUTERS & FLUIDS,2002.745-767.
  • 8李本文,于洋,赫冀成.极坐标与圆柱坐标下Fourier-Chebyshev配置点谱方法泊松方程求解器[J].东北大学学报(自然科学版),2008,29(2):241-245. 被引量:4
  • 9Li B W,Zhao Y R,Yu Y. Three-dimensional transient Navier-Stokes solvers in cylindrical coordinate system based on a spectral collocation method using explicit treatment of the pressure[J].{H}International Journal for Numerical Methods in Fluids,2010.284-298.
  • 10Huang W,Sloan D M. Pole condition for singular problems:the pseudospectral approximation[J].{H}Journal of Computational Physics,1993.254-261.

二级参考文献13

  • 1Chen H, Su Y, Shizgal B D. A direct spectral collocation Poisson solver in polar and cylindrical coordinates [ J ]. Journal of Comput Phys, 2000,160:453 - 469.
  • 2Shen J. Efficient spectral-Galerkin methods Ⅲ : polar and cylindrical geometries[J ]. SIAM J Sci Comput, 1997, 18:1583 - 1604.
  • 3Zhao S, Yedlin M J. A new iterative Chebyshev spectral method for solving the elliptic equation △ ( σ △ u ) = f [ J ]. Journal of Comput Phys, 1994,113:215- 223.
  • 4Dang-Vu H, Delcarte C. An accurate solution of the Poisson equation by the Chebyshev collocation method[J]. Journal of Comput Phys, 1993 ,104:211 - 220.
  • 5Huang W, Ma H P, Sun W. Convergence analysis of spectral collocation methods for singular differential equation [ J ]. SIAM J Numer Anal, 2003,41:2333 - 2349.
  • 6Eisen H, Heinrich W, Witsch K. Spectral collocation methods and polar coordinate singularities [ J ]. Journal of Comput Phys, 1991,96 : 241 - 257.
  • 7Huang W, Sloan D M. Pole condition for singular problem: the pseudospectral approximation [ J ]. Journal of Comput Phys, 1993,107:211 - 220.
  • 8Baltensperger R, Berrut J P. The errors in calculating the pseudospectral differentiation matrices for Chebyshev-Gauss- Lobatto points [ J ]. Computers & Mathematics with Applications, 1999,37:41 - 48.
  • 9Gottlieb D, Orszag S A. Numerical analysis of spectral method: theory and applications[M]. Philadelphia: SIAM, 1977.
  • 10Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral method in fluid dynamics [ M]. Berlin: Spinger Verlag, 1988.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部