期刊文献+

轻度剥离二硫化钼/石墨烯复合材料的制备及其电化学储锂性能 被引量:3

Syntheis and electrochemical performance of slightly exfoliated MoS_2 /graphene composite for lithium storage
下载PDF
导出
摘要 为了增强MoS2的电化学储锂性能,将轻度剥离的商业MoS2与氧化石墨烯悬浮液混合,用液相还原法制备了轻度剥离MoS2/石墨烯复合材料,并对其微观结构和形貌进行了表征。结果表明轻度剥离MoS2的层数明显减少,其表面产生了许多裂纹,复合材料中轻度剥离的MoS2与石墨烯能较好地复合在一起。电化学测试表明与商业化MoS2比,轻度剥离MoS2/石墨烯复合材料具有更高的电化学储锂容量(1 022mAh/g),更好的循环稳定性能和显著增强的充放电倍率性能。电化学阻抗测试表明石墨烯显著降低了电极反应过程中的电子转移电阻。电化学储锂性能的增强主要是由于轻度剥离MoS2层数的明显减少及其表面的许多裂纹,以及轻度剥离MoS2与石墨烯之间的相互协同作用。电化学阻抗测试证明了石墨烯显著增强了复合电极材料的导电性能和电化学贮锂过程中电子传递能力。 In order to improve the electrochemical performance of MoSe for lithium storage, the slightly exfoliated MoS2/graphene composite has been synthesized by a liquid phase reduction method employing slightly exfoiatiated commercial MoS2 and graphene oxide sheets as starting materials. The microstructure and morphology of the samples are characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM). It is found that there are many cracks existing in the slightly exfoiatiated MoS2 surface, which offer more channels {or Li-ion insertion/extraction. In the com- posite, the slightly exfoiatiated MoSz sheets are well combined with graphene. The electrochemical measurement demonstrates that the exfoliated MoSe/graphene composite exhibits higher reversible capacity (1 022 mAh/g) with excellent cycling perform- ance and significantly enhanced high-rate capability compared to MoSe. The electrochemical impedance test indicates that the incorporation of graphene greatly reduces the eletron-transfer resistance of electrode reaction~ The significant improvement in electrochemical perfromance could be atrributed to the crack-rich surface structure of exfoliated MoS2 and the synergic interaction between exfoiated MoSv and graphene. In addition, the electrochemical impedance spectra demonstrate that graphene greatly en hances the conductivity and charge-transfer of the composite electrode for the electrochemical lithium storage.
机构地区 浙江大学化学系
出处 《中国科技论文》 CAS 北大核心 2013年第12期1247-1252,共6页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20110101130003) 国家自然科学基金资助项目(21173190) 科技部国际合作专项基金资助项目(2012DFG42100) 浙江省科技厅国际合作项目(2013C24011) 博士后科学基金资助项目(2013M540485) 浙江省能源与核技术应用研究所开放基金资助项目
关键词 电化学性能 二硫化钼 石墨烯 复合材料 锂离子电池 electrochemical performance molybdenum disulfidel graphene composite lithium ion battery
  • 相关文献

参考文献23

  • 1Tarascon J M,Armand M. Issues and challenges facing rechargeable lithium batteries[J].{H}NATURE,2001.359-367.
  • 2Armand M,Tarascon J M. Building better batteries[J].{H}NATURE,2008.652-657.
  • 3Huang X,Zeng Z,Zhang H. Metal dichalcogenide nanosheets:preparation,properties and applications[J].{H}CHEMICAL SOCIETY REVIEWS,2013,(05):1934-1946.
  • 4Chhowalla M,Shin H S,Eda G. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].Nat Chem,2013,(04):263-275.
  • 5Zhan J H,Zhang Z D,Qian X F. Solvothermal synthesis of nanocrystalline MoS2 from MoO3 and elemental sulfur[J].{H}Journal of Solid State Chemistry,1998,(01):270-273.
  • 6Hwang H,Kim H,Cho J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J].{H}Nano Letters,2011,(11):4826-4830.
  • 7Ding S,Zhang D,Chen J S. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties[J].Nanoscale,2012,(01):95-98.
  • 8Wang M,Li G,Xu H. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J].ACS Appl Mater Interf,2013,(03):1003-1008.
  • 9Du G,Guo Z P,Wang S Q. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J].{H}Chemistry Communications,2010,(07):1106-1108.
  • 10Xiao J,Choi D W,Cosimbescu L. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries[J].{H}CHEMISTRY OF MATERIALS,2010,(16):4522-4524.

二级参考文献37

  • 1Tarascon J M,Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature,2001.359-367.
  • 2Fergus J W. Recent developments in cathode materials for lithium ion batteries[J].Journal of Power Sources,2010,(04):939-954.
  • 3Kganyago K R,Ngoepe P E,Catlow C R A. Ab initio calculation of the voltage profile for LiC6[J].Solid State Ionics,2003,(01):21-23.
  • 4Novoselov K S,Geim AK,Morozov S V. Electric field effect in atomically thin carbon films[J].Science,2004.666-669.
  • 5Novoselov K S,Geim AK,Morozov S V. Two-dimensional gas of massless Dirac fermions in grapheme[J].Nature,2005.197-200.
  • 6Hernandez Y,Nicolosi V,Lotya M. High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology,2008.563-568.
  • 7Banhart F,Ajayan P M. Carbon onions as nanoscopic pressure cells for diamond formation[J].Nature,1996.433-435.
  • 8Chae H K,Siberio D Y,Kim J. A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004.523-527.
  • 9Wang Y,Huang Y,Song Y. Room temperature ferromagnetism of grapheme[J].Nano Letters,2009,(01):220-224.
  • 10Guo P,Song H H,Chen X H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries[J].Electrochemistry Communications,2009,(06):1320-1324.

共引文献26

同被引文献43

  • 1Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6: 183-191.
  • 2Sun Yiqing, Wu Qiong, Shi Gaoquan. Graphene based new energy materials [J]. Energy Environment Sci- ence, 2011, 4(4): 1113-1132.
  • 3Pumera M. Graphene-based nanomaterials for energy storage [J]. Energy Environment Science, 2011, 4 (3) : 668-674.
  • 4Huang Xiao, Yin Zongyou, Wu Shixin, et al. Gra- phene-based materials: synthesis, characterization, properties, and applications [J]. Small, 2011, 7(14): 1876-1902.
  • 5Guo Shaojun, Dong Shaojun. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids,and energy and analytical applications [J]. Chemical Society Review, 2011, 40(5) : 2644-2672.
  • 6Xiang Haifeng, Li Zhide, Xie Ke, et al. Graphene sheets as anode materials for Li-ion batteries., prepara- tion, structure, electrochemical properties and mecha-nism for lithium storage [J]. RSC Advances, 2012, 2 (17) : 6792-6799.
  • 7Bhardwaj T, Antic A, Pavan B, et al. Enhanced elec- trochemical lithium storage by graphene nanoribbons [J]. Journal of the American Chemical Society, 2010, 132(36) : 12556-12558.
  • 8Pan Dengyu, Wang Song, Zhao Bin, et aL Li storage properties of disordered graphene nanosheets [J]. Chemistry of Materials, 2009, 21(14): 3136-3142.
  • 9Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in re chargeable lithium ion batteries [J]. Nano Letters, 2008, 8(8) : 2277-2282.
  • 10Smith R J, King P J, Lotya M, et al. Large-scale exfo- liation of inorganic layered compounds in aqueous sur- factant solutions [J]. Advanced Materials, 2011, 23 (34) : 3944-3948.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部