期刊文献+

一种新型流媒体流行度预测模型

A Novel Prediction Model for Streaming Media Popularity
下载PDF
导出
摘要 通过分析流媒体在不同类型的群体中的传播过程,本文提出其传播过程类似于传染病在不同类型人群的传播过程,以各型流媒体对不同群体的吸引力(易感群体)、不同类型群体传播流媒体的能力(传染源)、流媒体的传播途径(传播方式)等为要素,建立一种新型流媒体流行度预测模型,用于定性和定量分析流媒体的流行度,进而为运营商的资源分配和部署提供依据。 By analyzing the streaming media propagations in different types of groups, this thesis argues that the propagation is similar to infectious diseases spreading process in various types of populations. By setting the different attractiveness of various types of streaming media on different groups ( vulnerable groups), the different groups' capacity of spreading streaming media and ways of transmission ( transmission mode) as the elements, a new prediction model of streaming popularity is proposed which could be used to qualitatively and quantitatively analyze the streaming media popularity and then provide the basis for the opera- tor' s resource allocation and deployment
出处 《计算机与现代化》 2014年第1期132-136,共5页 Computer and Modernization
关键词 易感群体 传染源 传播途径 vulnerable groups infection source transmission mode
  • 相关文献

参考文献15

  • 1Jin S,Bestavros A. Popularity-aware greedy dual-size Web proxy caching algorithms[A].2000.254-261.
  • 2Chen X,Zhang X D. Popularity-based PPM:An effective Web prefetching technique for high accuracy and low stor-age[A].2002.296-304.
  • 3邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报,2003,26(11):1510-1517. 被引量:45
  • 4Kingsley G Zipf. Human Behavior and the Principle of Least Effort[M].Oxford,England,Addison-Wesley Press,1949.
  • 5Axtell R L. Zipf distribution of U.S.firm sizes[J].Sci-ence,2001,(5536):1818-1820.
  • 6Bi Z Q,Faloutsos C,Korn F. The“DGX” distribution for mining massive, shewed data[A].2001.17-26.
  • 7Bishop C M,Nasrabadi N M. Pattern Recognition and Ma-chine Learning[M].{H}New York:Springer-Verlag,2006.
  • 8Guo L,Tan E,Chen S. The stretched exponential distribution of internet media access patterns[A].2008.283-294.
  • 9Qin Y X,Lin W,Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements[J].Annals of Biomedical Engi-neering,2002,(05):693-702.
  • 10Volz E. Susceptible-infected-recovered epidemics in popu-lations with heterogeneous contact rates[J].The European Physical Journal B,2007,(03):381-386.

二级参考文献9

  • 1史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 2Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109
  • 3Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284
  • 4Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111
  • 5Sarukkai R. Link prediction and path Analysis using Markov chains. In: Proceedings of the 9th world wide web conference, Amsterdam, Netherlands, 2000. http://www9.org/w9cdrom/68/68.html
  • 6Fu Y, Sandhu K, Shih M Y. Clustering of Web users based on access patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA, 1999
  • 7Tak W Y, Matthew J, Hector G M. From user access pattern to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris France, 1996
  • 8Cooper G F, Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9: 309~347
  • 9Heckerman D,Geiger D,Chickering M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995, 20: 197~243

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部