期刊文献+

城市水灾害风险等级的RBF-C评估方法 被引量:5

A Risk Assessment Method Based on RBF Artificial Neural Network-Cloud Model for Urban Water Disaster
下载PDF
导出
摘要 针对城市水灾害系统的不确定性特征,提出了基于RBF神经网络和云模型理论的RBF-C风险等级评估方法。选取影响城市水灾害的4个基本评价因子,依据实测水文频率曲线确定相应于各风险等级的标准限值,并生成各评价因子下风险等级的综合云模型。用评价因子实测时间序列进行RBF神经网络建模,预测值代入综合云模型得到水灾害风险等级确定度分布。实例证明,RBF-C风险等级评估方法能够改进评价过程中风险归属不确定性问题,评估结果能较为准确地反映出城市水灾害的风险程度。 Aiming at the uncertainty characteristics of urban water disaster system, this paper proposed a risk assessment method based on RBF- ANN and cloud model (RBF-C). Selecting four basic evaluation factors of urban water disaster and according to the measured hydrological frequen- cy curve, this paper determined the risk limits corresponding to each level and generated comprehensive cloud models for risk levels of each evalua- tion factor. Using the evaluation factors of measured time series to establish RBF-ANN, the predictive values were got into the comprehensive cloud model to obtain the distributions of certainty degrees of water disaster risk levels. The study case shows that the RBF-C method can improve the un- certainty problem of lhe risk ownership in evaluation process and the evaluation results can reflect the risk degree of urban water disaster accurately.
出处 《人民黄河》 CAS 北大核心 2014年第1期8-10,14,共4页 Yellow River
基金 国家自然科学基金资助项目(41071018) 国家重点基础研究发展计划项目(2013CB956503) 教育部新世纪优秀人才支持计划项目(NCET-12-0262) 教育部博士点基金资助项目(20120091110026 20100091120059) 江苏省教育厅青蓝工程项目
关键词 风险评估 城市水灾害 云模型 RBF神经网络 时间序列分析 risk assessment urban water disaster cloud model RBF artificial neural network time series analysis
  • 相关文献

参考文献15

  • 1刘敏;权瑞松;许世远.城市暴雨内涝灾害风险评估:理论、方法与实践[M]北京:科学出版社,2012.
  • 2Not J. Extreme Events:a Physical Reconstruction and Risk Assessment[M].Cambridge:Cambridge University Press,2006.
  • 3周洪建,王静爱,岳耀杰,王志强,刘珍,万金红.基于河网水系变化的水灾危险性评价——以永定河流域京津段为例[J].自然灾害学报,2006,15(6):45-49. 被引量:14
  • 4纪昌明,张验科.基于随机模拟的水库泄洪风险分析[J].人民黄河,2009,31(5):36-37. 被引量:7
  • 5雷瑞丽,张贵金,陈雄波.基于随机微分方程的大坝漫顶风险研究[J].人民黄河,2010,32(4):114-115. 被引量:5
  • 6IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation:a Special Report of Working Groups I and II of the Intergov-ernmental Panel on Climate Change[M].Cambridge and New York:Cambridge University Press,2012.
  • 7Haykin S S. Neural Networks:a Comprehensive Foundation[M].Englewood Clif s,NJ:Prentice Hal,2007.
  • 8Powel M J D. Radial Basis Functions for Multivariable Interpolation:a Review[A].Oxford:Clarendon Press,1987.143-167.
  • 9Broomhead D S,Lowe D. Radial Basis Functions,Multi-Variable Functional Interpolation and Adaptive Networks[R].Great Malvern (United Kingdom):Royal Signals and Radar Establishment Malvern,1988.
  • 10Fredric M Ham;Ivica Kostanic;叶世伟;王海娟.神经计算原理[M]北京:机械工业出版社,2007.

二级参考文献106

共引文献1414

同被引文献57

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部