期刊文献+

复数域最小二乘平差及其在PolInSAR植被高反演中的应用 被引量:23

Criterion of Complex Least Squares Adjustment and Its Application in Tree Height Inversion with PolInSAR Data
原文传递
导出
摘要 目前涉及复数观测的数据处理时,主要还是依据观测过程,分步或直接解算,不能考虑观测误差、多余观测信息等。针对这一情况,本文介绍了复数域中数据处理的最小二乘方法,试图将测量平差从实数域推广到复数域,并定量研究了两种平差准则的优劣性。为了了解复数域最小二乘的有效性,以极化干涉SAR植被高反演为例,建立了复数域平差函数模型和随机模型,构建了复数域最小二乘法反演植被高。结果表明该算法反演的植被高结果可靠,其精度优于经典植被高反演算法,且计算简单,易于实现。 At present, data processing methods involving complex observations are mainly step- by-step or direct solver based on the observation process which cannot consider observation errors, redundant observation and so on. For this situation, this paper introduces least squares methods of complex data processing and tries to extend surveying adjustments from the real number space to the complex number space. Meanwhile, the two adjustment criteria in complex domain are compared quantitatively. In order to understand effectiveness of complex least squares, the tree height inversion from PolInSAR data is taken as an example. We firstly establish complex adjustment function model and stochastic model for PolInSAR tree height inversion and apply complex least squares method to estimate tree height. The results show that the complex least squares approach is reliable and better than other classic tree height retrieval methods. Besides, the method is simple and easy to realize.
出处 《测绘学报》 EI CSCD 北大核心 2014年第1期45-51,59,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学重点基金(41274010 40974007 40901172) 国家863计划(2012AA121301) 湖南省自然科学基金(12JJ4035) 中南大学研究生自主探索创新项目(2013zzts055)
关键词 测量平差 复数域最小二乘 极化干涉SAR 植被高反演 三阶段算法 surveying adjustment complex least squares polarimetric interferometric SAR (Po- IInSAR) tree height inversion three-stage algorithm
  • 相关文献

参考文献22

  • 1TREUHAFT R N, MADSEN S N, MOGHADDAM M, et al. Vegetation Characteristics and Underlying Topography from Interferolnetric Radar[J]. Radio Science, 1996, 31 (6) : 1449-1485.
  • 2CLOUDE S R, PAPATHANASSIOU K P. Polarimetric SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5) : 1551-1565.
  • 3TREUHAFT R N, SIQUEIRA P R. Vertical Structure of Vegetated Land Sur{aees from Interferometric and Polarimetric Radar[J]. Radio Science, 2000, 35(1): 141-177.
  • 4PAPATHANASSIOU K P, CLOUDE S R. Single-baseline Polarimetric SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352-2363.
  • 5CLOUDE S R, PAPATHANASSIOU K P. Three-stage Inversion Process for Polarimetric SAR Interferometry[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003, 150 (3) : 125-134.
  • 6GILBOA G, SOCHEN N. Image Enhancement and Denoising by Complex Diffusion Processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8) : 1020-1036.
  • 7GRIGOLI F, CESCA S, DAHM T, KRIEGER L. A Complex Linear Least-squares Method to Derive Relative and Absolute Orientations of Seismic Sensors [J]. Geophysical Journal International, 2012, 188(3)~ 1243-1254.
  • 8OPPENHEIM A V, LIM J S. The Importance of Phase in Signals[J]. Proceedings of the IEEE, 1981, 69 (5):529- 541.
  • 9TAEIGHAT A, SAYED A H. Least Mean phase Adaptive Filters with Application to Communications Systems [J]. IEEE Signal Processing Letters, 2012, 11(2):220-223.
  • 10DANILO P M, SU L G, KAZUYUKI A. Sequential Data Fusion via Vector Spaces: Fusion of Heterogeneous Data in the Complex Domain[J]. The Journal of VLSI Signal Processing, 2007, 48(1): 99-108.

二级参考文献75

共引文献69

同被引文献160

引证文献23

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部