期刊文献+

Ti_(1.0)Mn_(0.9)V_(1.1)的添加对氢化燃烧合成复合机械球磨制备Mg_(95)Ni_5放氢性能的影响

Effects of Ti_(1.0)Mn_(0.9)V_(1.1) on hydrogen desorption property of Mg_(95)Ni_5 prepared by hydriding combustion synthesis and mechanical milling
下载PDF
导出
摘要 采用氢化燃烧合成法(HCS)制备Mg95Ni5+x%Ti1.0Mn0.9V1.1(x=0、10、20和30)复合物,然后将氢化燃烧合成产物进行机械球磨(MM)得到镁基复合储氢材料。采用压力-浓度-温度(pcT)曲线、X线衍射仪(XRD)和扫描电子显微镜(SEM)研究材料的放氢性能、相结构、表面形貌以及颗粒化学成分。研究表明:添加30%(质量分数)Ti1.0Mn0.9V1.1可使Mg95Ni5的HCS+MM产物的放氢性能达到最佳,在523 K时1 200 s内就可完全放氢,放氢量达5.71%,同时放氢反应的表观活化能从148.20 kJ/mol降低到129.69 kJ/mol,这主要归因于Ti1.0Mn0.9V1.1的添加提高了氢在产物中的扩散能力以及对镁基氢化物放氢的氢泵作用。 Mg95Ni5 +x% Ti1.0 Mn0.9V1.1 ( x = 0, 10,20, and 30) composites were prepared by hydriding combustion synthesis (HCS) and the HCS products were mechanically milled (MM) to obtain Mg-based hydrogen-storage composites.The dehydriding properties, phase structure, surface morphology, and particle composition were studied by pressure-composition-temperature (pcT) ,X-ray diffraction (XRD) and scanning electron microscopy (SEM).Results showed that addition of 30% (mass fraction) Ti1.0Mn0.9V1.1 exhibited the best hydrogen desorption property for the HCS+MM product of Mg95Nis, which could completely desorb 5.71% H2 in 1 200 s at 523 K.The apparent dehydrogenation activation energy of the system was decreased to 129.69 kJ/mol from 148.20 kJ/mol of Mg95Nis.The improvement of the hydrogen desorption property could be attributed to the enhancement of hydrogen diffusion and the "hydrogen pumping" of Ti1.0Mn0.9V1.1.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2014年第1期1-6,共6页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金(51071085 51171079) 江苏省青蓝工程 江苏高校优势学科建设工程项目
关键词 镁基储氢材料 氢化燃烧合成 机械球磨 放氢性能 氢泵作用 Mg-based hydrogen storage materials hydriding combustion synthesis mechanical milling hydrogen desorption property hydrogen pump
  • 相关文献

参考文献25

  • 1毛宗强.氢能:21世纪的绿色能源[M]{H}北京:化学工业出版社,2005.
  • 2Schlapbach L,Züttel A. Hydrogen-storage materials for mobile applications[J].{H}NATURE,2001.253-258.
  • 3Oumellal Y,Rougier A,Nazri G A. Metal hydrides for lithium-ion batteries[J].{H}Nature Materials,2008,(11):916-921.doi:10.1038/nmat2288.
  • 4Aguey-Zinsou K F,Ares-Fernández J R. Hydrogen in magnesium:new perspectives toward functional stores[J].Energy & Environmental Science,2010,(5):526-543.
  • 5Zhang Q A,Zhang L X,Wang Q Q. Crystallization behavior and hydrogen storage kinetics of amorphous Mg11 Y2 Ni2 alloy[J].{H}Journal of Alloys and Compounds,2013.376-381.
  • 6Liu T,Qiu C G,Zhang T W. Synthesis of Mg@Mg17Al12ultrafine particles with superior hydrogen storage properties by hydrogen plasma-metal reaction[J].{H}Journal of Materials Chemistry,2012,(37):19831-19839.
  • 7Grzech A,Lafont U,Magusin P C M M. Microscopic study of TiF3 as hydrogen storage catalyst for MgH2[J].Journal of Physical Chemistry C,2012,(49):26027-26035.
  • 8Liu G,Wang Y J,Xu C C. Excellent catalytic effects of highly crumpled grapheme nanosheets on hydrogenation/dehydrogenation of magnesium hydride[J].Nanoscale,2013,(3):1074-1081.
  • 9Jeon K J,Moon H R,Ruminski A M. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J].{H}Nature Materials,2011,(4):286-290.
  • 10Zhu C Y,Akiyama T. Zebra-striped fibers in relation to the H2 sorption properties for MgH2 nanofibers produced by a vapor-solid process[J].Crystal Growth Design,2012,(8):4043-4052.

二级参考文献3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部