期刊文献+

自适应面具的快速稠密立体匹配技术研究 被引量:5

Research on Fast Dense Stereo Matching Technique Using Adaptive Mask
下载PDF
导出
摘要 文中提出一种稠密点云快速立体匹配方法,该方法以传统相位相关算法为基础,通过对匹配点梯度估计的方法自适应叠加离散面具,增加近似同一深度区域的匹配权重,使重构精度与可信度得以提升.通过储存与重复利用二维傅里叶变换的中间结果大幅提高算法的计算效率.由于该算法符合SIMD模型规则,因此GPU的并行计算能力使得匹配过程基本达到了实时性要求.实验表明,该快速相位相关算法对短基线平行光轴被动立体视觉系统所采集的光滑不规则漫反射物体表面具有较好地快速重构能力,因此可在诸如三维人脸识别等领域得到广泛应用. Based on the classical phase-only correlation algorithms, a fast stereo matching method is proposed for dense point cloud. The adaptive discrete mask is used to the matching weight of the similar dense fields by estimating the gradient of matching points, thus the reconstruction precision and reliability are improved. Moreover, the proposed method also improves computational efficiency via storing and reusing the intermediate data of 2D DFT. Since the proposed algorithm satisfies SIMD model, the GPU parallel computing makes the matching process basically reach real-time . The experimental results show that the proposed fast phase-only correlation algorithm performs well in the surface reconstruction of smooth irregular diffuse objects obtained from short-baseline parallel-axis binocular stereo device, therefore it can be widely used in 3 D face recognition and other fields.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第1期11-20,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61272309) 浙江省重大科技专项项目(No.2011C11050) 浙江省自然科学基金项目(No.Y1100440,Y1110491,LQ13F020005) 丽水市高层次人才培养项目(No.2013RC08)资助
关键词 双目视觉 相位相关 自适应面具 稠密匹配 Binocular Vision, Phase-Only Correlation, Adaptive Mask, Dense Matching
  • 相关文献

参考文献14

  • 1Heo Y S,Lee K M,Lee S U. Robust Stereo Matching Using Adap-tive Normalized Cross-Correlation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,(04):807-822.
  • 2Muquit M A,Shibahara T,Aoki T. A High-Accuracy Passive 3D Measurement System Using Phase-Based Image Matching[J].IEICE Trans on Fundamentals of Electronics Communications and Com-puter Sciences,2006,(03):686-697.
  • 3Takita K,Aoki T,Sasaki Y. High-Accuracy Subpixel Image Registration Based on Phase-Only Correlation[J].IEICE Trans on Fun-damentals of Electronics Communications and Computer Sciences,2003,(08):1925-1934.
  • 4周佳立,张树有,杨国平.基于双目被动立体视觉的三维人脸重构与识别[J].自动化学报,2009,35(2):123-131. 被引量:18
  • 5Zhou Jun,Xu Yi,Yu Wurong. Phase Matching with Multiresolution Wavelet Transform[A].San Jose,USA,2002.82-91.
  • 6周佳立,张树有,武敏.一种改进的三维人脸重构方法[J].模式识别与人工智能,2010,23(5):686-694. 被引量:3
  • 7周佳立,张树有.基于被动立体视觉的脚型建模与比对方法[J].计算机辅助设计与图形学学报,2009,21(6):782-788. 被引量:9
  • 8Yoon K J,Kweon I S. Adaptive Support-Weight Approach for Cor-respondence Search[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,(04):650-656.
  • 9周佳立.一种单反相机作为双目的立体视觉精确同步开关装置[P]中国,2011102515992011.
  • 10Gerrits M,Bekaert P. Local Stereo Matching with Segmentation-Based Outlier Rejection[A].Québec City,Canada,2006.66-69.

二级参考文献57

  • 1刘宏建,罗毅,刘允才.可变精度的神经网络摄像机标定法[J].光学精密工程,2004,12(4):443-448. 被引量:13
  • 2张可,许斌,唐立新,师汉民.基于BP神经网络的双目视觉系统摄像机标定[J].机械与电子,2005,23(12):12-14. 被引量:5
  • 3闫丽,段发阶.单目立体视觉传感器的优化设计及精度分析[J].传感技术学报,2006,19(2):349-352. 被引量:12
  • 4Zhao W, Chellappa R, Phillips P J, Rosenfeld A. Face recognition: a literature survey. ACM Computing Surveys, 2003, 35(4): 399-458.
  • 5Phillips P J, Wechsler H, Huang J, Rauss P. The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing Journal, 1998, 16(5): 295-306.
  • 6Bronstein A M, Bronstein M M, Kimmel R. Three-dimensional face recognition. International Journal of Compurer Vision, 2005, 64(1): 5-30.
  • 7Gokberk B, Salah A A, Akarun L. Rank-based decision fusion for 3D shape-based face recognition. In: Proceedings of the 13th Signal Processing and Communication Applications Conference. New York, USA: IEEE, 2005. 1019-1028.
  • 8Lee Y, Song H, Yang U, Shin H, Sohn K. Local feature based 3D face recognition. In: Proceedings of the 5th International Conference on Audio-and Video-based Biomettic Person Authentication. New York, USA: Springer, 2005. 909-918.
  • 9Lu X G, Jain A K. Deformation analysis for 3D face matching. In: Proceedings of the 7th IEEE Workshops on Applications of Computer Vision. Brekenridge, Colorado, USA: IEEE, 2005. 99-104.
  • 10Russ T D, Koch M W, Little C Q. A 2D range Hausdorff approach for 3D face recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 169.

共引文献24

同被引文献34

  • 1张亮,陈家骏.基于大规模语料库的句法模式匹配研究[J].中文信息学报,2007,21(5):31-35. 被引量:8
  • 2Knuth D E,Morris J H,Pratt V R.Past pattern matching in string[J].SIAM Journal in Computing,1977,20 (6):323-350.
  • 3Boyer R S,Moore J S.A fast string searching algorithm[J].Communication of ACM,1977,20(10):762-772.
  • 4Aho A V,Corasick M J.Efficient string matching:an aid to bibliographic search[J].Communications of the ACM,1975,18(6):333-340.
  • 5Heo Y S,Lee K M,Lee S U.Robust Stereo Matching Using Adaptive Normalized Cross-Correlation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2011,33(4):807-822.
  • 6Morisset B,Rusu R B,Sundaresan A,et al.Leaving flatland:toward real time 3D navigation[C]//Proceedings of IEEE International Conference on Robotics and Automation.Los Alamitos:IEEE Computer Society Press,2009:3786-3793.
  • 7Olsson C,Ulén J,Boykov Y.In defense of 3D label stereo[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2013:1730-1737.
  • 8Scharstein D,Szeliski R.A taxonomy and evaluation of dense two frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1/2/3):7-42.
  • 9Yoon K J,Kweon I S.Adaptive support weight approach for correspondence search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):650-656.
  • 10Boykov Y,Veksler O,Zabih R.Fast approximate energy minimization via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23 (11):1222-1239.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部