期刊文献+

安全协议的博弈论机制 被引量:9

Game-Theoretic Mechanism for Cryptographic Protocol
下载PDF
导出
摘要 在博弈论框架下,基于纳什均衡设计安全协议的计算和通信规则.首先,提出安全协议的扩展式博弈模型,结合通用可组合安全的思想给出安全通信协议博弈参与者集合、信息集、可行策略、行动序列、参与者函数、效用函数等定义;在该模型下的安全协议能安全并发执行.其次,根据博弈的纳什均衡给出安全通信协议的形式化定义.最后,基于该机制给出一个安全协议实例,并分析该安全协议博弈机制的有效性. Both game theory and secure communication protocols focus on the designing and analyzing mechanisms for parties in a collaborative manner. Yet the two fields developed very different sets of goals and formalisms. This paper studies the secure communication protocol problem in the game- theoretic setting. The goal of this paper is to formulate computation and communication rules of a secure communication protocol based on Nash equilibrium in the game theoretic framework. We firstly propose a game-theoretic model of secure protocols, including the player set, information set, available action, action sequence, player function, and utility function using the idea from universally composable security. Since our mode combines with the universally composable ideal, secure protocols can be concurrently run within this model. Secondly, the formalized definition of secure protocols is given according to concept of Nash equilibrium. Thirdly, we give an instance of secure protocol under the game theoretic mechanism. Finally, the analysis shows that our mechanism is effective.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第2期344-352,共9页 Journal of Computer Research and Development
基金 国家自然基金会委员会-广东联合基金重点基金项目(U1135002) 国家科技部重大专项基金项目(2011ZX03005-002) 国家自然科学基金项目(61170280 61272398 61262073 61363068) 中国博士后基金项目(2013M530705) 贵州省自然科学基金项目(20132112) 贵州大学博士基金项目(2012-024)
关键词 博弈论 纳什均衡 博弈树 理性安全协议 通用可组合安全 game theory Nash equilibrium game tree rational secure protocol universallycomposable security
  • 相关文献

参考文献4

二级参考文献59

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2刘志宏,马建峰,黄启萍.基于区域的无线传感器网络密钥管理[J].计算机学报,2006,29(9):1608-1616. 被引量:27
  • 3SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 4HALPERN J,TEAGUE V.Rational secret sharing and multi-party computation:extended abstract[C]//Proc of 36t ACM Symposium on Theory of Computing(STOC).Chicago:ACM Press,2004:623-632.
  • 5HALPERN J.Computer science and game theory:A brief survey[M/OL]//MACMILLAN P.2nd ed.The New Palgrave Dictionary of Economics.http://www.cs.cornell.edu/home/halpern/.
  • 6DODIS Y,RABIN T.Cryptography and game theory[M]//NISAN N.DEN T R,TARDOS E,et al.Algorithmic Game Theory.Cambridge:Cambridge University Press,2007:181-207.
  • 7DODIS Y,HALEVI S,RABIN T.A cryptographic solution to a game theoretic problem[C]//Proc of CRYPTO'2000.Berlin:Springer,2000,1880:112-131.
  • 8LEPINSKI M,MICALI S,PEIKERT C,et al.Completely fair SFE and coalition-safe cheap talk[C]//Proc of 23rd ACM Symp Principles of Distributed Computing.New York:ACM.2004:1-10.
  • 9IZMALKOV S,MICAH S,LEPINSKI M.Rational secure computation and ideal mechanism design[C]//Proc of 46th IEEE Symp Foundations of Computer Science.Pittsburgh:IEEE,2005:585-595.
  • 10LYSYANSKAYA A,TRIANDOPOULOS N.Rationality and adversarial behavior in multi-party computation(extended abstract)[J].Lecture Notes in Computer Science,2006,4117:180-197.

共引文献37

同被引文献43

引证文献9

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部